File size: 9,618 Bytes
f3534a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
language:
- pt
license: apache-2.0
library_name: transformers
tags:
- portuguese
- brasil
- gemma
- portugues
- instrucao
- TensorBlock
- GGUF
datasets:
- rhaymison/superset
pipeline_tag: text-generation
widget:
- text: Me explique como funciona um computador.
  example_title: Computador.
- text: Me conte sobre a ida do homem a Lua.
  example_title: Homem na Lua.
- text: Fale sobre uma curiosidade sobre a história do mundo
  example_title: História.
- text: Escreva um poema bem interessante sobre o Sol e as flores.
  example_title: Escreva um poema.
base_model: rhaymison/gemma-portuguese-luana-2b
model-index:
- name: gemma-portuguese-luana-2b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 24.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 24.34
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 27.11
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 70.86
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 1.51
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 43.97
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 40.05
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 51.83
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 30.42
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/gemma-portuguese-luana-2b
      name: Open Portuguese LLM Leaderboard
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## rhaymison/gemma-portuguese-luana-2b - GGUF

This repo contains GGUF format model files for [rhaymison/gemma-portuguese-luana-2b](https://huggingface.co/rhaymison/gemma-portuguese-luana-2b).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```
<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [gemma-portuguese-luana-2b-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes |
| [gemma-portuguese-luana-2b-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss |
| [gemma-portuguese-luana-2b-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss |
| [gemma-portuguese-luana-2b-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss |
| [gemma-portuguese-luana-2b-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [gemma-portuguese-luana-2b-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss |
| [gemma-portuguese-luana-2b-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended |
| [gemma-portuguese-luana-2b-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [gemma-portuguese-luana-2b-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended |
| [gemma-portuguese-luana-2b-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended |
| [gemma-portuguese-luana-2b-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss |
| [gemma-portuguese-luana-2b-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-portuguese-luana-2b-GGUF/blob/main/gemma-portuguese-luana-2b-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/gemma-portuguese-luana-2b-GGUF --include "gemma-portuguese-luana-2b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/gemma-portuguese-luana-2b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```