morriszms's picture
Upload folder using huggingface_hub
3ec4e4c verified
|
raw
history blame
4.58 kB
metadata
license: gemma
library_name: transformers
base_model: nbeerbower/gemma2-gutenberg-27B
datasets:
  - jondurbin/gutenberg-dpo-v0.1
tags:
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

nbeerbower/gemma2-gutenberg-27B - GGUF

This repo contains GGUF format model files for nbeerbower/gemma2-gutenberg-27B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model

Model file specification

Filename Quant type File Size Description
gemma2-gutenberg-27B-Q2_K.gguf Q2_K 9.732 GB smallest, significant quality loss - not recommended for most purposes
gemma2-gutenberg-27B-Q3_K_S.gguf Q3_K_S 11.333 GB very small, high quality loss
gemma2-gutenberg-27B-Q3_K_M.gguf Q3_K_M 12.503 GB very small, high quality loss
gemma2-gutenberg-27B-Q3_K_L.gguf Q3_K_L 13.522 GB small, substantial quality loss
gemma2-gutenberg-27B-Q4_0.gguf Q4_0 14.555 GB legacy; small, very high quality loss - prefer using Q3_K_M
gemma2-gutenberg-27B-Q4_K_S.gguf Q4_K_S 14.658 GB small, greater quality loss
gemma2-gutenberg-27B-Q4_K_M.gguf Q4_K_M 15.502 GB medium, balanced quality - recommended
gemma2-gutenberg-27B-Q5_0.gguf Q5_0 17.587 GB legacy; medium, balanced quality - prefer using Q4_K_M
gemma2-gutenberg-27B-Q5_K_S.gguf Q5_K_S 17.587 GB large, low quality loss - recommended
gemma2-gutenberg-27B-Q5_K_M.gguf Q5_K_M 18.075 GB large, very low quality loss - recommended
gemma2-gutenberg-27B-Q6_K.gguf Q6_K 20.809 GB very large, extremely low quality loss
gemma2-gutenberg-27B-Q8_0.gguf Q8_0 26.950 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gemma2-gutenberg-27B-GGUF --include "gemma2-gutenberg-27B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gemma2-gutenberg-27B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'