File size: 6,424 Bytes
456147f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
- bigcode/self-oss-instruct-sc2-exec-filter-50k
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
- TensorBlock
- GGUF
base_model: ibm-granite/granite-8b-code-instruct-128k
model-index:
- name: granite-8B-Code-instruct-128k
results:
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis (Python)
type: bigcode/humanevalpack
metrics:
- type: pass@1
value: 62.2
name: pass@1
verified: false
- type: pass@1
value: 51.4
name: pass@1
verified: false
- type: pass@1
value: 38.9
name: pass@1
verified: false
- type: pass@1
value: 38.3
name: pass@1
verified: false
- task:
type: text-generation
dataset:
name: RepoQA (Python@16K)
type: repoqa
metrics:
- type: pass@1 (thresh=0.5)
value: 73.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 37.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 73.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 62.0
name: pass@1 (thresh=0.5)
verified: false
- type: pass@1 (thresh=0.5)
value: 63.0
name: pass@1 (thresh=0.5)
verified: false
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## ibm-granite/granite-8b-code-instruct-128k - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-8b-code-instruct-128k](https://huggingface.co/ibm-granite/granite-8b-code-instruct-128k).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
System:
{system_prompt}
Question:
{prompt}
Answer:
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-8b-code-instruct-128k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q2_K.gguf) | Q2_K | 2.852 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-8b-code-instruct-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_S.gguf) | Q3_K_S | 3.304 GB | very small, high quality loss |
| [granite-8b-code-instruct-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_M.gguf) | Q3_K_M | 3.674 GB | very small, high quality loss |
| [granite-8b-code-instruct-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q3_K_L.gguf) | Q3_K_L | 3.993 GB | small, substantial quality loss |
| [granite-8b-code-instruct-128k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_0.gguf) | Q4_0 | 4.276 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-8b-code-instruct-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_K_S.gguf) | Q4_K_S | 4.305 GB | small, greater quality loss |
| [granite-8b-code-instruct-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q4_K_M.gguf) | Q4_K_M | 4.548 GB | medium, balanced quality - recommended |
| [granite-8b-code-instruct-128k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_0.gguf) | Q5_0 | 5.190 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-8b-code-instruct-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_K_S.gguf) | Q5_K_S | 5.190 GB | large, low quality loss - recommended |
| [granite-8b-code-instruct-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q5_K_M.gguf) | Q5_K_M | 5.330 GB | large, very low quality loss - recommended |
| [granite-8b-code-instruct-128k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q6_K.gguf) | Q6_K | 6.161 GB | very large, extremely low quality loss |
| [granite-8b-code-instruct-128k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-8b-code-instruct-128k-GGUF/tree/main/granite-8b-code-instruct-128k-Q8_0.gguf) | Q8_0 | 7.977 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --include "granite-8b-code-instruct-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-8b-code-instruct-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|