terhdavid commited on
Commit
8124c24
·
1 Parent(s): 598320d

End of training

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - szeged_ner
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: test-train-model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: szeged_ner
21
+ type: szeged_ner
22
+ config: business
23
+ split: validation
24
+ args: business
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9325044404973357
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9308510638297872
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9316770186335402
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9925327242378986
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # test-train-model
44
+
45
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0319
48
+ - Precision: 0.9325
49
+ - Recall: 0.9309
50
+ - F1: 0.9317
51
+ - Accuracy: 0.9925
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 5
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2029 | 1.0 | 511 | 0.0493 | 0.8734 | 0.8564 | 0.8648 | 0.9873 |
83
+ | 0.0756 | 2.0 | 1022 | 0.0381 | 0.8930 | 0.9025 | 0.8977 | 0.9897 |
84
+ | 0.0489 | 3.0 | 1533 | 0.0327 | 0.925 | 0.9184 | 0.9217 | 0.9921 |
85
+ | 0.0339 | 4.0 | 2044 | 0.0323 | 0.9385 | 0.9202 | 0.9293 | 0.9926 |
86
+ | 0.0258 | 5.0 | 2555 | 0.0319 | 0.9325 | 0.9309 | 0.9317 | 0.9925 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.32.0
92
+ - Pytorch 2.0.1+cu118
93
+ - Datasets 2.14.4
94
+ - Tokenizers 0.13.3