--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - szeged_ner metrics: - precision - recall - f1 - accuracy model-index: - name: test-train-model results: - task: name: Token Classification type: token-classification dataset: name: szeged_ner type: szeged_ner config: business split: validation args: business metrics: - name: Precision type: precision value: 0.9325044404973357 - name: Recall type: recall value: 0.9308510638297872 - name: F1 type: f1 value: 0.9316770186335402 - name: Accuracy type: accuracy value: 0.9925327242378986 --- # test-train-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Precision: 0.9325 - Recall: 0.9309 - F1: 0.9317 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2029 | 1.0 | 511 | 0.0493 | 0.8734 | 0.8564 | 0.8648 | 0.9873 | | 0.0756 | 2.0 | 1022 | 0.0381 | 0.8930 | 0.9025 | 0.8977 | 0.9897 | | 0.0489 | 3.0 | 1533 | 0.0327 | 0.925 | 0.9184 | 0.9217 | 0.9921 | | 0.0339 | 4.0 | 2044 | 0.0323 | 0.9385 | 0.9202 | 0.9293 | 0.9926 | | 0.0258 | 5.0 | 2555 | 0.0319 | 0.9325 | 0.9309 | 0.9317 | 0.9925 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3