Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ language:
|
|
9 |
- nl
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
@@ -29,7 +29,7 @@ Then you can use the model like this:
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
-
model = SentenceTransformer('
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
@@ -55,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
59 |
-
model = AutoModel.from_pretrained('
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
9 |
- nl
|
10 |
---
|
11 |
|
12 |
+
# allnli-GroNLP-bert-base-dutch-cased
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
59 |
+
model = AutoModel.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|