andkos commited on
Commit
a650eff
1 Parent(s): 0d2d6df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -9,7 +9,7 @@ language:
9
  - nl
10
  ---
11
 
12
- # MODEL_NAME (allnli-GroNLP-bert-base-dutch-cased)
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
@@ -29,7 +29,7 @@ Then you can use the model like this:
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
- model = SentenceTransformer('andkos/allnli-GroNLP-bert-base-dutch-cased')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
@@ -55,8 +55,8 @@ def mean_pooling(model_output, attention_mask):
55
  sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
- tokenizer = AutoTokenizer.from_pretrained('andkos/allnli-GroNLP-bert-base-dutch-cased')
59
- model = AutoModel.from_pretrained('andkos/allnli-GroNLP-bert-base-dutch-cased')
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
9
  - nl
10
  ---
11
 
12
+ # allnli-GroNLP-bert-base-dutch-cased
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
+ model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
 
55
  sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
59
+ model = AutoModel.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')