tfshaman commited on
Commit
fc09132
1 Parent(s): fca30d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -149
README.md CHANGED
@@ -44,7 +44,23 @@ f"Question {your_math_word_problem}\n\nAnswer: "
44
  ### Direct Use
45
 
46
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  [More Information Needed]
49
 
50
  ### Downstream Use [optional]
@@ -53,127 +69,7 @@ f"Question {your_math_word_problem}\n\nAnswer: "
53
 
54
  [More Information Needed]
55
 
56
- ### Out-of-Scope Use
57
-
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
-
74
- ## How to Get Started with the Model
75
-
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
79
-
80
- ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
- ### Training Procedure
89
-
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
  @mastersthesis{timofej2024velke,
179
  title={Velk{\'e} jazykov{\'e} modely pro numerick{\'e} dotazy},
@@ -183,33 +79,6 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
183
  school={{\v{C}}esk{\'e} vysok{\'e} u{\v{c}}en{\'\i} technick{\'e} v Praze. Vypo{\v{c}}etn{\'\i} a informa{\v{c}}n{\'\i} centrum.}
184
  }
185
 
186
- **BibTeX:**
187
-
188
- [More Information Needed]
189
-
190
- **APA:**
191
-
192
- [More Information Needed]
193
-
194
- ## Glossary [optional]
195
-
196
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
197
-
198
- [More Information Needed]
199
-
200
- ## More Information [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Authors [optional]
205
-
206
- [More Information Needed]
207
-
208
- ## Model Card Contact
209
-
210
- [More Information Needed]
211
-
212
-
213
  ### Framework versions
214
 
215
  - PEFT 0.7.1
 
44
  ### Direct Use
45
 
46
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+ ```python
48
+ bnb_config = BitsAndBytesConfig(
49
+ load_in_4bit=True,
50
+ bnb_4bit_use_double_quant=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ bnb_4bit_compute_dtype=torch.bfloat16,
53
+ )
54
+ config = PeftConfig.from_pretrained("tfshaman/SymPy-Mistral")
55
+ base_model = AutoModelForCausalLM.from_pretrained("meta-math/MetaMath-Mistral-7B", quantization_config=bnb_config)
56
+ tokenizer = AutoTokenizer.from_pretrained("tfshaman/SymPy-Mistral-tokenizer", use_fast=False, padding_side="left")
57
+ base_model.resize_token_embeddings(len(tokenizer))
58
+ tokenizer.pad_token = "<s>"
59
+ tokenizer.padding_side='left'
60
+ model = PeftModel.from_pretrained(base_model, "tfshaman/SymPy-Mistral", quantization_config=bnb_config)
61
+ model = model.to("cuda")
62
+
63
+ ```
64
  [More Information Needed]
65
 
66
  ### Downstream Use [optional]
 
69
 
70
  [More Information Needed]
71
 
72
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
74
  @mastersthesis{timofej2024velke,
75
  title={Velk{\'e} jazykov{\'e} modely pro numerick{\'e} dotazy},
 
79
  school={{\v{C}}esk{\'e} vysok{\'e} u{\v{c}}en{\'\i} technick{\'e} v Praze. Vypo{\v{c}}etn{\'\i} a informa{\v{c}}n{\'\i} centrum.}
80
  }
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  ### Framework versions
83
 
84
  - PEFT 0.7.1