End of training
Browse files- README.md +69 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: pyannote/segmentation-3.0
|
4 |
+
tags:
|
5 |
+
- speaker-diarization
|
6 |
+
- speaker-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- diarizers-community/callhome
|
10 |
+
model-index:
|
11 |
+
- name: speaker-segmentation-fine-tuned-callhome-eng
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# speaker-segmentation-fine-tuned-callhome-eng
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4570
|
23 |
+
- Der: 0.1803
|
24 |
+
- False Alarm: 0.0556
|
25 |
+
- Missed Detection: 0.0731
|
26 |
+
- Confusion: 0.0516
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.001
|
46 |
+
- train_batch_size: 32
|
47 |
+
- eval_batch_size: 32
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- num_epochs: 5.0
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
|
57 |
+
| 0.4257 | 1.0 | 362 | 0.4789 | 0.1918 | 0.0573 | 0.0786 | 0.0559 |
|
58 |
+
| 0.3889 | 2.0 | 724 | 0.4660 | 0.1866 | 0.0556 | 0.0760 | 0.0549 |
|
59 |
+
| 0.3758 | 3.0 | 1086 | 0.4587 | 0.1807 | 0.0548 | 0.0755 | 0.0503 |
|
60 |
+
| 0.3643 | 4.0 | 1448 | 0.4564 | 0.1805 | 0.0555 | 0.0734 | 0.0515 |
|
61 |
+
| 0.3511 | 5.0 | 1810 | 0.4570 | 0.1803 | 0.0556 | 0.0731 | 0.0516 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.40.1
|
67 |
+
- Pytorch 2.2.0+cu121
|
68 |
+
- Datasets 2.17.0
|
69 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5899124
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55fe678fe97e57c45354922ccf4fcb3dcd5de03a1d271aae3da81f266f56ddf3
|
3 |
size 5899124
|