--- language: - tr license: apache-2.0 base_model: openai/whisper-large-v2 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9 metrics: - wer model-index: - name: 'Whisper Large v2 TR ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 9 type: mozilla-foundation/common_voice_9 config: tr split: None args: tr metrics: - name: Wer type: wer value: 9.500538020086083 --- # Whisper Large v2 TR This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Common Voice 9 dataset. It achieves the following results on the evaluation set: - Loss: 0.1784 - Wer: 9.5005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1558 | 1.0 | 3147 | 0.1813 | 11.0406 | | 0.0705 | 2.0 | 6294 | 0.1675 | 9.8256 | | 0.029 | 3.0 | 9441 | 0.1784 | 9.5005 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2