albrechtje's picture
Update README.md
0274b23
|
raw
history blame
3.34 kB
---
license: mit
base_model: dbmdz/bert-base-german-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: gecco-bert-base-german-uncased
results: []
widget:
- text: "Was haben Sie bisher unternommen, um ihr Problem zu lösen?"
- text: "Hallo Peter, wie kann ich helfen?"
- text: "Ich bin hier, um zuzuhören. Wenn du mir erzählen möchtest, wie es dir geht, bin ich bereit."
- text: "Fällt es dir leicht, mit anderen Menschen in Kontakt zu treten?"
- text: "Welche Hobbys oder Freizeitaktivitäten würdest du gerne in der Zukunft ausprobieren?"
- text: "Haben Sie finanzielle Unterstützung von Ihrem Mann?"
- text: "Könnten Sie bitte genauer beschreiben, welche Schwierigkeiten durch diese technischen Probleme entstehen?"
- text: "Gibt es denn keine Hobbys, die du mit deinen Freunden gemeinsam machen kannst?"
- text: "Wo geht ihr Sohn zur Schule?"
- text: "Haben sie gemeinsame Hobbies mit Ihren Freunden?"
---
# gecco-bert-base-german-uncased
This model is for text classfication of German counseling messages.
It is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased)
trained with the German E-Counseling Conversation Dataset,
created at the Technische Hochschule Nürnberg: [github.com/th-nuernberg/gecco-dataset](https://github.com/th-nuernberg/gecco-dataset)
It achieves the following results on the evaluation set:
- Loss: 1.2341
- Accuracy: 0.6968
- F1: 0.4493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 3.4151 | 1.0 | 20 | 3.0885 | 0.2935 | 0.0760 |
| 2.9316 | 2.0 | 40 | 2.7003 | 0.3484 | 0.1035 |
| 2.5556 | 3.0 | 60 | 2.3463 | 0.5032 | 0.2350 |
| 2.19 | 4.0 | 80 | 2.0714 | 0.5613 | 0.2841 |
| 1.904 | 5.0 | 100 | 1.8381 | 0.6 | 0.3085 |
| 1.6285 | 6.0 | 120 | 1.6712 | 0.6323 | 0.3633 |
| 1.4482 | 7.0 | 140 | 1.5518 | 0.6581 | 0.3774 |
| 1.2807 | 8.0 | 160 | 1.4796 | 0.6677 | 0.3880 |
| 1.1126 | 9.0 | 180 | 1.4207 | 0.6613 | 0.3787 |
| 1.0747 | 10.0 | 200 | 1.3461 | 0.6774 | 0.3885 |
| 0.9068 | 11.0 | 220 | 1.3097 | 0.6871 | 0.4132 |
| 0.8498 | 12.0 | 240 | 1.2893 | 0.6903 | 0.4235 |
| 0.8343 | 13.0 | 260 | 1.2549 | 0.7 | 0.4332 |
| 0.7375 | 14.0 | 280 | 1.2426 | 0.7 | 0.4497 |
| 0.7274 | 15.0 | 300 | 1.2385 | 0.7 | 0.4512 |
| 0.6916 | 16.0 | 320 | 1.2341 | 0.6968 | 0.4493 |
### Framework versions
- Transformers 4.35.1
- Pytorch 1.10.1+cu111
- Datasets 2.14.7
- Tokenizers 0.14.1