File size: 2,021 Bytes
0fd6ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vi
tags:
- generated_from_trainer
datasets:
- doof-ferb/LSVSC
metrics:
- f1
model-index:
- name: vietnamese-voice-classification-model
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: LSVSC
      type: doof-ferb/LSVSC
    metrics:
    - name: F1
      type: f1
      value: 0.9830866807610994
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vietnamese-voice-classification-model

This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vi](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) on the LSVSC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0971
- F1: 0.9831

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.501         | 0.9931 | 36   | 0.2733          | 0.9699 |
| 0.1647        | 1.9862 | 72   | 0.1368          | 0.9787 |
| 0.1045        | 2.9793 | 108  | 0.1080          | 0.9820 |
| 0.0903        | 4.0    | 145  | 0.0972          | 0.9836 |
| 0.1065        | 4.9655 | 180  | 0.0971          | 0.9831 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0