File size: 2,021 Bytes
0fd6ace |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vi
tags:
- generated_from_trainer
datasets:
- doof-ferb/LSVSC
metrics:
- f1
model-index:
- name: vietnamese-voice-classification-model
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: LSVSC
type: doof-ferb/LSVSC
metrics:
- name: F1
type: f1
value: 0.9830866807610994
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vietnamese-voice-classification-model
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vi](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) on the LSVSC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0971
- F1: 0.9831
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.501 | 0.9931 | 36 | 0.2733 | 0.9699 |
| 0.1647 | 1.9862 | 72 | 0.1368 | 0.9787 |
| 0.1045 | 2.9793 | 108 | 0.1080 | 0.9820 |
| 0.0903 | 4.0 | 145 | 0.0972 | 0.9836 |
| 0.1065 | 4.9655 | 180 | 0.0971 | 0.9831 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|