thanhkt commited on
Commit
72cfabb
1 Parent(s): cd410db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -20,3 +20,50 @@ tags:
20
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ ### 🤗 Hugging Face Transformers
25
+
26
+ Qwen2.5-Math can be deployed and infered in the same way as [Qwen2.5](https://github.com/QwenLM/Qwen2.5). Here we show a code snippet to show you how to use the chat model with `transformers`:
27
+
28
+ ```python
29
+
30
+ from unsloth import FastLanguageModel
31
+ import torch
32
+ max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
33
+ dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
34
+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
35
+
36
+
37
+ model, tokenizer = FastLanguageModel.from_pretrained(
38
+ model_name = "thanhkt/Qwen2.5-1.5B-MathInstruct",
39
+ max_seq_length = max_seq_length,
40
+ dtype = dtype,
41
+ load_in_4bit = load_in_4bit,
42
+ # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
43
+ )
44
+ alpaca_prompt = """Below...
45
+
46
+ ### Instruct:
47
+ {}
48
+
49
+ ### Input:
50
+ {}
51
+
52
+ ### Output:
53
+ {}"""
54
+
55
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
56
+ inputs = tokenizer(
57
+ [
58
+ alpaca_prompt.format(
59
+ """You are a teacher , you can explain the complex things with simple word""", # instruction
60
+ "What is word 2 vec", # input
61
+ "", # output - leave this blank for generation!
62
+ )
63
+ ], return_tensors = "pt").to("cuda")
64
+
65
+ from transformers import TextStreamer
66
+ text_streamer = TextStreamer(tokenizer)
67
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512)
68
+ ```
69
+