theainerd commited on
Commit
90cc307
·
1 Parent(s): cba2ef9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -1,8 +1,7 @@
1
-
2
  language: hi
3
  datasets:
4
  - Interspeech 2021 : [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
5
-
6
  metrics:
7
  - wer
8
  tags:
@@ -13,7 +12,6 @@ tags:
13
  license: apache-2.0
14
  model-index:
15
  - name: Hindi XLSR Wav2Vec2 Large 53
16
-
17
  results:
18
  - task:
19
  name: Speech Recognition
@@ -53,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
53
  # Preprocessing the datasets.
54
  # We need to read the aduio files as arrays
55
  def speech_file_to_array_fn(batch):
56
- speech_array, sampling_rate = torchaudio.load(batch["path"])
57
- batch["speech"] = resampler(speech_array).squeeze().numpy()
58
- return batch
59
 
60
  test_dataset = test_dataset.map(speech_file_to_array_fn)
61
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
62
 
63
  with torch.no_grad():
64
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
65
 
66
  predicted_ids = torch.argmax(logits, dim=-1)
67
 
@@ -89,30 +87,30 @@ processor = Wav2Vec2Processor.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hin
89
  model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
90
  model.to("cuda")
91
 
92
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
93
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
94
 
95
  # Preprocessing the datasets.
96
  # We need to read the aduio files as arrays
97
  def speech_file_to_array_fn(batch):
98
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
99
- speech_array, sampling_rate = torchaudio.load(batch["path"])
100
- batch["speech"] = resampler(speech_array).squeeze().numpy()
101
- return batch
102
 
103
  test_dataset = test_dataset.map(speech_file_to_array_fn)
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
107
  def evaluate(batch):
108
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
 
110
- with torch.no_grad():
111
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
 
113
- pred_ids = torch.argmax(logits, dim=-1)
114
- batch["pred_strings"] = processor.batch_decode(pred_ids)
115
- return batch
116
 
117
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
 
 
1
+ ---
2
  language: hi
3
  datasets:
4
  - Interspeech 2021 : [Multilingual and code-switching ASR challenges for low resource Indian languages](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html).
 
5
  metrics:
6
  - wer
7
  tags:
 
12
  license: apache-2.0
13
  model-index:
14
  - name: Hindi XLSR Wav2Vec2 Large 53
 
15
  results:
16
  - task:
17
  name: Speech Recognition
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
87
  model = Wav2Vec2ForCTC.from_pretrained("theainerd/Wav2Vec2-large-xlsr-hindi")
88
  model.to("cuda")
89
 
90
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
98
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
99
+ \treturn batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
+ \twith torch.no_grad():
109
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
+ \tpred_ids = torch.argmax(logits, dim=-1)
112
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
113
+ \treturn batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116