|
import pickle |
|
import random |
|
import numpy as np |
|
|
|
with open('models.pickle', 'rb')as f: |
|
models = pickle.load(f) |
|
|
|
LORA_TOKEN = '' |
|
|
|
NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>' |
|
|
|
def sample_next(ctx:str,model,k): |
|
|
|
ctx = ', '.join(ctx.split(', ')[-k:]) |
|
if model.get(ctx) is None: |
|
return " " |
|
possible_Chars = list(model[ctx].keys()) |
|
possible_values = list(model[ctx].values()) |
|
|
|
|
|
|
|
|
|
return np.random.choice(possible_Chars,p=possible_values) |
|
|
|
def generateText(model, minLen=100, size=5): |
|
keys = list(model.keys()) |
|
starting_sent = random.choice(keys) |
|
k = len(random.choice(keys).split(', ')) |
|
|
|
sentence = starting_sent |
|
ctx = ', '.join(starting_sent.split(', ')[-k:]) |
|
|
|
while True: |
|
next_prediction = sample_next(ctx,model,k) |
|
sentence += f", {next_prediction}" |
|
ctx = ', '.join(sentence.split(', ')[-k:]) |
|
|
|
if '\n' in sentence: break |
|
sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ') |
|
|
|
|
|
|
|
|
|
prompt = sentence.split('\n')[0] |
|
if len(prompt)<minLen: |
|
prompt = generateText(model, minLen, size=1)[0] |
|
|
|
size = size-1 |
|
if size == 0: return [prompt] |
|
output = [] |
|
for i in range(size+1): |
|
prompt = generateText(model, minLen, size=1)[0] |
|
output.append(prompt) |
|
|
|
return output |
|
if __name__ == "__main__": |
|
for model in models: |
|
text = generateText(model[0], minLen=300, size=5) |
|
text_neg = generateText(model[1], minLen=300, size=5) |
|
|
|
|
|
for i in range(len(text)): |
|
print(text[i]) |
|
|
|
print(text_neg[i]) |
|
print('----------------------------------------------------------------') |
|
print('********************************************************************************************************************************************************') |
|
|
|
|