thegenerativegeneration commited on
Commit
cca2b4d
1 Parent(s): 137f54b

Upload 13 files

Browse files
README.md CHANGED
@@ -9,12 +9,12 @@ base_model: intfloat/multilingual-e5-small
9
  metrics:
10
  - accuracy
11
  widget:
12
- - text: 'query: Sí, la próxima vez que vayas, cuenta conmigo. He querido salir y hacer
13
- más actividades en la naturaleza.'
14
- - text: 'query: I''m man, I''m leaving now.'
15
- - text: 'query: Ja, forse possiamo fare un giro in bicicletta insieme.'
16
- - text: 'query: Mak saya suruh balik, jumpa lagi.'
17
- - text: 'query: İnanılmaz, bu harika! Bir ayı gördüğüne inanamıyorum!'
18
  pipeline_tag: text-classification
19
  inference: true
20
  ---
@@ -47,10 +47,10 @@ The model has been trained using an efficient few-shot learning technique that i
47
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
48
 
49
  ### Model Labels
50
- | Label | Examples |
51
- |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
52
- | 1 | <ul><li>'query: Tja, måste dra nu, ses senare.'</li><li>'query: Ispričavam se, moram sada otići.'</li><li>'query: Przepraszam, muszę już iść.'</li></ul> |
53
- | 0 | <ul><li>'query: Sveiki, kā jums klājas?'</li><li>'query: அதிர்ச்சிகரமானது, அது மிகவும் அருமையாக இருக்கிறது! நீ கரடியை பார்த்தது எனக்கு நம்பிக்கையே வரவில்லை!'</li><li>'query: Ég hef það fínt, takk. Og þú?'</li></ul> |
54
 
55
  ## Uses
56
 
@@ -70,7 +70,7 @@ from setfit import SetFitModel
70
  # Download from the 🤗 Hub
71
  model = SetFitModel.from_pretrained("setfit_model_id")
72
  # Run inference
73
- preds = model("query: I'm man, I'm leaving now.")
74
  ```
75
 
76
  <!--
@@ -102,17 +102,17 @@ preds = model("query: I'm man, I'm leaving now.")
102
  ### Training Set Metrics
103
  | Training set | Min | Median | Max |
104
  |:-------------|:----|:-------|:----|
105
- | Word count | 2 | 7.6965 | 31 |
106
 
107
  | Label | Training Sample Count |
108
  |:------|:----------------------|
109
- | 0 | 902 |
110
- | 1 | 910 |
111
 
112
  ### Training Hyperparameters
113
  - batch_size: (16, 2)
114
  - num_epochs: (1, 16)
115
- - max_steps: -1
116
  - sampling_strategy: undersampling
117
  - body_learning_rate: (1e-05, 1e-05)
118
  - head_learning_rate: 0.001
@@ -130,53 +130,53 @@ preds = model("query: I'm man, I'm leaving now.")
130
  ### Training Results
131
  | Epoch | Step | Training Loss | Validation Loss |
132
  |:------:|:----:|:-------------:|:---------------:|
133
- | 0.0000 | 1 | 0.3613 | - |
134
- | 0.0005 | 50 | 0.3577 | - |
135
- | 0.0010 | 100 | 0.3511 | 0.3413 |
136
- | 0.0015 | 150 | 0.3372 | - |
137
- | 0.0019 | 200 | 0.3447 | 0.3347 |
138
- | 0.0024 | 250 | 0.3349 | - |
139
- | 0.0029 | 300 | 0.3326 | 0.3224 |
140
- | 0.0034 | 350 | 0.3372 | - |
141
- | 0.0039 | 400 | 0.3185 | 0.3039 |
142
- | 0.0044 | 450 | 0.2828 | - |
143
- | 0.0049 | 500 | 0.3055 | 0.2774 |
144
- | 0.0054 | 550 | 0.2594 | - |
145
- | 0.0058 | 600 | 0.2779 | 0.2489 |
146
- | 0.0063 | 650 | 0.2486 | - |
147
- | 0.0068 | 700 | 0.2321 | 0.22 |
148
- | 0.0073 | 750 | 0.1838 | - |
149
- | 0.0078 | 800 | 0.1845 | 0.2075 |
150
- | 0.0083 | 850 | 0.1899 | - |
151
- | 0.0088 | 900 | 0.2147 | 0.2025 |
152
- | 0.0093 | 950 | 0.1644 | - |
153
- | 0.0097 | 1000 | 0.2019 | 0.1821 |
154
- | 0.0102 | 1050 | 0.2309 | - |
155
- | 0.0107 | 1100 | 0.2084 | 0.1784 |
156
- | 0.0112 | 1150 | 0.1508 | - |
157
- | 0.0117 | 1200 | 0.1064 | 0.1453 |
158
- | 0.0122 | 1250 | 0.1376 | - |
159
- | 0.0127 | 1300 | 0.0828 | 0.121 |
160
- | 0.0132 | 1350 | 0.1628 | - |
161
- | 0.0136 | 1400 | 0.1308 | 0.1018 |
162
- | 0.0141 | 1450 | 0.0566 | - |
163
- | 0.0146 | 1500 | 0.0953 | 0.0767 |
164
- | 0.0151 | 1550 | 0.1607 | - |
165
- | 0.0156 | 1600 | 0.1322 | 0.0625 |
166
- | 0.0161 | 1650 | 0.0861 | - |
167
- | 0.0166 | 1700 | 0.0926 | 0.0423 |
168
- | 0.0171 | 1750 | 0.0338 | - |
169
- | 0.0175 | 1800 | 0.1029 | 0.0344 |
170
- | 0.0180 | 1850 | 0.0442 | - |
171
- | 0.0185 | 1900 | 0.019 | 0.0256 |
172
- | 0.0190 | 1950 | 0.0489 | - |
173
- | 0.0195 | 2000 | 0.0675 | 0.0187 |
174
 
175
  ### Framework Versions
176
  - Python: 3.10.11
177
  - SetFit: 1.0.3
178
  - Sentence Transformers: 2.7.0
179
- - Transformers: 4.39.0
180
  - PyTorch: 2.4.0
181
  - Datasets: 2.20.0
182
  - Tokenizers: 0.15.2
 
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: 'query: Interessant. Hast du das schon mal ausprobiert?'
13
+ - text: 'query: はい、持っていますよ。すぐにメールで送りますね。'
14
+ - text: 'query: Va bene ci sentiamo dopo Marco buona giornata'
15
+ - text: 'query: Ζητώ συγγνώμη, πρέπει να αποχωρήσω τώρα.'
16
+ - text: 'query: Guten Morgen, Maria! Hast du die Präsentation für das Meeting heute
17
+ fertig?'
18
  pipeline_tag: text-classification
19
  inference: true
20
  ---
 
47
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
48
 
49
  ### Model Labels
50
+ | Label | Examples |
51
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
52
+ | 0 | <ul><li>'query: สวัสดีค่ะ วันนี้เป็นอย่างไรบ้าง?'</li><li>'query: Jag förstår. Vad tycker du att vi ska göra nu?'</li><li>'query: Hej, wszystko w porządku. Właśnie dostałam nową pracę.'</li></ul> |
53
+ | 1 | <ul><li>'query: Чудесно, доскоро!'</li><li>'query: Mama cheamă, trebuie întorc acasă, pa.'</li><li>'query: Perdó, ja he de marxar.'</li></ul> |
54
 
55
  ## Uses
56
 
 
70
  # Download from the 🤗 Hub
71
  model = SetFitModel.from_pretrained("setfit_model_id")
72
  # Run inference
73
+ preds = model("query: はい、持っていますよ。すぐにメールで送りますね。")
74
  ```
75
 
76
  <!--
 
102
  ### Training Set Metrics
103
  | Training set | Min | Median | Max |
104
  |:-------------|:----|:-------|:----|
105
+ | Word count | 2 | 7.3663 | 21 |
106
 
107
  | Label | Training Sample Count |
108
  |:------|:----------------------|
109
+ | 0 | 286 |
110
+ | 1 | 290 |
111
 
112
  ### Training Hyperparameters
113
  - batch_size: (16, 2)
114
  - num_epochs: (1, 16)
115
+ - max_steps: 2000
116
  - sampling_strategy: undersampling
117
  - body_learning_rate: (1e-05, 1e-05)
118
  - head_learning_rate: 0.001
 
130
  ### Training Results
131
  | Epoch | Step | Training Loss | Validation Loss |
132
  |:------:|:----:|:-------------:|:---------------:|
133
+ | 0.0002 | 1 | 0.3683 | - |
134
+ | 0.0125 | 50 | 0.3256 | - |
135
+ | 0.0250 | 100 | 0.211 | 0.1998 |
136
+ | 0.0375 | 150 | 0.1668 | - |
137
+ | 0.0500 | 200 | 0.0788 | 0.0571 |
138
+ | 0.0625 | 250 | 0.0644 | - |
139
+ | 0.0750 | 300 | 0.0232 | 0.0286 |
140
+ | 0.0875 | 350 | 0.0024 | - |
141
+ | 0.1000 | 400 | 0.0014 | 0.0945 |
142
+ | 0.1125 | 450 | 0.0007 | - |
143
+ | 0.1250 | 500 | 0.0008 | 0.1036 |
144
+ | 0.1375 | 550 | 0.0005 | - |
145
+ | 0.1500 | 600 | 0.0005 | 0.098 |
146
+ | 0.1625 | 650 | 0.0003 | - |
147
+ | 0.1750 | 700 | 0.0005 | 0.1056 |
148
+ | 0.1875 | 750 | 0.0004 | - |
149
+ | 0.2000 | 800 | 0.0006 | 0.1044 |
150
+ | 0.2124 | 850 | 0.0005 | - |
151
+ | 0.2249 | 900 | 0.0004 | 0.1072 |
152
+ | 0.2374 | 950 | 0.0003 | - |
153
+ | 0.2499 | 1000 | 0.0001 | 0.0993 |
154
+ | 0.2624 | 1050 | 0.0003 | - |
155
+ | 0.2749 | 1100 | 0.0003 | 0.1114 |
156
+ | 0.2874 | 1150 | 0.0002 | - |
157
+ | 0.2999 | 1200 | 0.0002 | 0.1078 |
158
+ | 0.3124 | 1250 | 0.0001 | - |
159
+ | 0.3249 | 1300 | 0.0002 | 0.0908 |
160
+ | 0.3374 | 1350 | 0.0002 | - |
161
+ | 0.3499 | 1400 | 0.0002 | 0.1019 |
162
+ | 0.3624 | 1450 | 0.0001 | - |
163
+ | 0.3749 | 1500 | 0.0002 | 0.11 |
164
+ | 0.3874 | 1550 | 0.0002 | - |
165
+ | 0.3999 | 1600 | 0.0001 | 0.1031 |
166
+ | 0.4124 | 1650 | 0.0001 | - |
167
+ | 0.4249 | 1700 | 0.0001 | 0.0996 |
168
+ | 0.4374 | 1750 | 0.0002 | - |
169
+ | 0.4499 | 1800 | 0.0001 | 0.0903 |
170
+ | 0.4624 | 1850 | 0.0002 | - |
171
+ | 0.4749 | 1900 | 0.0001 | 0.0901 |
172
+ | 0.4874 | 1950 | 0.0002 | - |
173
+ | 0.4999 | 2000 | 0.0001 | 0.0854 |
174
 
175
  ### Framework Versions
176
  - Python: 3.10.11
177
  - SetFit: 1.0.3
178
  - Sentence Transformers: 2.7.0
179
+ - Transformers: 4.39.3
180
  - PyTorch: 2.4.0
181
  - Datasets: 2.20.0
182
  - Tokenizers: 0.15.2
config.json CHANGED
@@ -19,7 +19,7 @@
19
  "position_embedding_type": "absolute",
20
  "tokenizer_class": "XLMRobertaTokenizer",
21
  "torch_dtype": "float32",
22
- "transformers_version": "4.39.0",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 250037
 
19
  "position_embedding_type": "absolute",
20
  "tokenizer_class": "XLMRobertaTokenizer",
21
  "torch_dtype": "float32",
22
+ "transformers_version": "4.39.3",
23
  "type_vocab_size": 2,
24
  "use_cache": true,
25
  "vocab_size": 250037
config_sentence_transformers.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.7.0",
4
- "transformers": "4.39.0",
5
  "pytorch": "2.4.0"
6
  },
7
  "prompts": {},
 
1
  {
2
  "__version__": {
3
  "sentence_transformers": "2.7.0",
4
+ "transformers": "4.39.3",
5
  "pytorch": "2.4.0"
6
  },
7
  "prompts": {},
config_setfit.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "labels": null,
3
- "normalize_embeddings": false
4
  }
 
1
  {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:61169cbb78c41b4aebadcaac92b29f7dd363dea2e868cf27f169ce0771888e6c
3
  size 470637416
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecfce4dd8b2e3179e859bc278ca2390319e04a66f3179fbbeb1bf7b598a86307
3
  size 470637416
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df178af3c19cf3bd160758f24dfedbf2133263527e90b572f5ff9c7107f6a5de
3
  size 4608
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:492fb3b7da876887807a7f0eb94fda6a77e65bbb7f72311fb8caaf601a46407c
3
  size 4608