---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: intfloat/multilingual-e5-small
metrics:
- accuracy
widget:
- text: 'query: Baiklah, kita cakap lagi nanti, Mark. Selamat hari!'
- text: 'query: Tôi xin lỗi nhưng tôi phải đi'
- text: 'query: 次回行くときは、私を連れて行ってください。もっと自然の中で活動したいと思っています。'
- text: 'query: Entschuldigung, ich muss jetzt gehen.'
- text: 'query: Buenos días, ¿cómo están ustedes?'
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with intfloat/multilingual-e5-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9333333333333333
name: Accuracy
---
# SetFit with intfloat/multilingual-e5-small
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 |
- 'query: Értem. Mit csinálunk most?'
- 'query: Ola Luca, que tal? Rematache o traballo?'
- 'query: Lijepo je. Hvala.'
|
| 1 | - 'query: Жөнейін, кейін кездесеміз.'
- 'query: Така, ќе се видиме повторно.'
- 'query: ठीक है बाद में बात करते हैं मार्क अच्छा दिन'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9333 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: Tôi xin lỗi nhưng tôi phải đi")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 7.2168 | 25 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 346 |
| 1 | 346 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: 2500
- sampling_strategy: undersampling
- body_learning_rate: (1e-06, 1e-06)
- head_learning_rate: 0.001
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: multilingual-e5-small
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0002 | 1 | 0.3607 | - |
| 0.0100 | 50 | 0.3634 | 0.3452 |
| 0.0200 | 100 | 0.3493 | 0.3377 |
| 0.0300 | 150 | 0.3244 | 0.3234 |
| 0.0400 | 200 | 0.3244 | 0.3034 |
| 0.0500 | 250 | 0.2931 | 0.2731 |
| 0.0600 | 300 | 0.2471 | 0.2398 |
| 0.0700 | 350 | 0.237 | 0.2168 |
| 0.0800 | 400 | 0.1964 | 0.2082 |
| 0.0900 | 450 | 0.2319 | 0.198 |
| 0.1000 | 500 | 0.2003 | 0.1968 |
| 0.1100 | 550 | 0.2014 | 0.1968 |
| 0.1200 | 600 | 0.1617 | 0.1879 |
| 0.1300 | 650 | 0.2214 | 0.1798 |
| 0.1400 | 700 | 0.2498 | 0.1768 |
| 0.1500 | 750 | 0.1527 | 0.1764 |
| 0.1600 | 800 | 0.1134 | 0.1733 |
| 0.1700 | 850 | 0.1393 | 0.1614 |
| 0.1800 | 900 | 0.1052 | 0.1549 |
| 0.1900 | 950 | 0.1772 | 0.149 |
| 0.2000 | 1000 | 0.1065 | 0.1504 |
| 0.2100 | 1050 | 0.087 | 0.1392 |
| 0.2200 | 1100 | 0.1416 | 0.1333 |
| 0.2300 | 1150 | 0.0767 | 0.1279 |
| 0.2400 | 1200 | 0.1228 | 0.1243 |
| 0.2500 | 1250 | 0.099 | 0.1128 |
| 0.2599 | 1300 | 0.1125 | 0.1106 |
| 0.2699 | 1350 | 0.1012 | 0.1156 |
| 0.2799 | 1400 | 0.0343 | 0.1022 |
| 0.2899 | 1450 | 0.0814 | 0.1012 |
| 0.2999 | 1500 | 0.0947 | 0.0965 |
| 0.3099 | 1550 | 0.0799 | 0.0964 |
| 0.3199 | 1600 | 0.113 | 0.0942 |
| 0.3299 | 1650 | 0.1125 | 0.0917 |
| 0.3399 | 1700 | 0.0507 | 0.0899 |
| 0.3499 | 1750 | 0.0986 | 0.0938 |
| 0.3599 | 1800 | 0.0885 | 0.0913 |
| 0.3699 | 1850 | 0.0712 | 0.0841 |
| 0.3799 | 1900 | 0.1131 | 0.0851 |
| 0.3899 | 1950 | 0.0701 | 0.0852 |
| 0.3999 | 2000 | 0.0805 | 0.0878 |
| 0.4099 | 2050 | 0.0375 | 0.0814 |
| 0.4199 | 2100 | 0.1236 | 0.0797 |
| 0.4299 | 2150 | 0.0532 | 0.0881 |
| 0.4399 | 2200 | 0.0265 | 0.0806 |
| 0.4499 | 2250 | 0.1268 | 0.0801 |
| 0.4599 | 2300 | 0.0557 | 0.0797 |
| 0.4699 | 2350 | 0.0956 | 0.0832 |
| 0.4799 | 2400 | 0.0671 | 0.081 |
| 0.4899 | 2450 | 0.1394 | 0.0794 |
| 0.4999 | 2500 | 0.1165 | 0.0798 |
### Framework Versions
- Python: 3.10.11
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.3
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```