update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ml
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- thennal/imasc
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Large V2 Malayalam
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: ICFOSS Malayalam Speech Corpus
|
20 |
+
type: thennal/imasc
|
21 |
+
config: ml
|
22 |
+
split: test
|
23 |
+
args: ml
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 44.13793103448276
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Large V2 Malayalam
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the ICFOSS Malayalam Speech Corpus dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.0617
|
38 |
+
- Wer: 44.1379
|
39 |
+
- Cer: 9.6895
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 1e-05
|
59 |
+
- train_batch_size: 8
|
60 |
+
- eval_batch_size: 4
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 2
|
63 |
+
- total_train_batch_size: 16
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 500
|
67 |
+
- training_steps: 5000
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
73 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
|
74 |
+
| 0.1071 | 0.13 | 500 | 0.1274 | 62.9885 | 15.0225 |
|
75 |
+
| 0.0693 | 0.26 | 1000 | 0.1052 | 57.4713 | 13.0696 |
|
76 |
+
| 0.054 | 0.39 | 1500 | 0.0902 | 48.0460 | 11.5173 |
|
77 |
+
| 0.0494 | 0.51 | 2000 | 0.0774 | 46.4368 | 10.7912 |
|
78 |
+
| 0.0446 | 0.64 | 2500 | 0.0722 | 46.8966 | 10.7161 |
|
79 |
+
| 0.0463 | 0.77 | 3000 | 0.0699 | 46.2069 | 10.3405 |
|
80 |
+
| 0.0347 | 0.9 | 3500 | 0.0662 | 43.6782 | 10.2404 |
|
81 |
+
| 0.0233 | 1.03 | 4000 | 0.0688 | 45.7471 | 10.4407 |
|
82 |
+
| 0.0226 | 1.16 | 4500 | 0.0642 | 44.5977 | 10.1152 |
|
83 |
+
| 0.0194 | 1.28 | 5000 | 0.0617 | 44.1379 | 9.6895 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.0.dev0
|
89 |
+
- Pytorch 1.13.0+cu117
|
90 |
+
- Datasets 2.7.1.dev0
|
91 |
+
- Tokenizers 0.13.2
|