--- license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - arrow metrics: - wer model-index: - name: whisper-small-indian_eng results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: arrow type: arrow config: default split: validation args: default metrics: - name: Wer type: wer value: 15.730337078651685 --- # whisper-small-indian_eng This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.7367 - Wer: 15.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5156 | 10.0 | 50 | 1.0266 | 19.1011 | | 0.171 | 20.0 | 100 | 0.7371 | 16.8539 | | 0.0018 | 30.0 | 150 | 0.6975 | 15.7303 | | 0.0004 | 40.0 | 200 | 0.7367 | 15.7303 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.19.1