therealvul
commited on
Commit
·
fd247fe
1
Parent(s):
09e7584
Delete Twilight0/config.yml
Browse files- Twilight0/config.yml +0 -117
Twilight0/config.yml
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
log_dir: "Models/Twilight0"
|
2 |
-
first_stage_path: "first_stage.pth"
|
3 |
-
save_freq: 1
|
4 |
-
log_interval: 10
|
5 |
-
device: "cuda"
|
6 |
-
epochs_1st: 200 # number of epochs for first stage training (pre-training)
|
7 |
-
epochs_2nd: 100 # number of peochs for second stage training (joint training)
|
8 |
-
batch_size: 2
|
9 |
-
max_len: 400 # maximum number of frames
|
10 |
-
#pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth"
|
11 |
-
pretrained_model: "Models/Twilight0/epoch_1st_00063.pth"
|
12 |
-
second_stage_load_pretrained: false # set to true if the pre-trained model is for 2nd stage
|
13 |
-
load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
|
14 |
-
|
15 |
-
F0_path: "Utils/JDC/bst.t7"
|
16 |
-
ASR_config: "Utils/ASR/config.yml"
|
17 |
-
ASR_path: "Utils/ASR/epoch_00080.pth"
|
18 |
-
PLBERT_dir: 'Utils/PLBERT/'
|
19 |
-
|
20 |
-
data_params:
|
21 |
-
train_data: "Data/train_list.txt"
|
22 |
-
val_data: "Data/val_list.txt"
|
23 |
-
root_path: "twilight_data"
|
24 |
-
OOD_data: "Data/OOD_texts.txt"
|
25 |
-
min_length: 50 # sample until texts with this size are obtained for OOD texts
|
26 |
-
|
27 |
-
preprocess_params:
|
28 |
-
sr: 24000
|
29 |
-
spect_params:
|
30 |
-
n_fft: 2048
|
31 |
-
win_length: 1200
|
32 |
-
hop_length: 300
|
33 |
-
|
34 |
-
model_params:
|
35 |
-
multispeaker: false
|
36 |
-
|
37 |
-
dim_in: 64
|
38 |
-
hidden_dim: 512
|
39 |
-
max_conv_dim: 512
|
40 |
-
n_layer: 3
|
41 |
-
n_mels: 80
|
42 |
-
|
43 |
-
n_token: 178 # number of phoneme tokens
|
44 |
-
max_dur: 50 # maximum duration of a single phoneme
|
45 |
-
style_dim: 128 # style vector size
|
46 |
-
|
47 |
-
dropout: 0.2
|
48 |
-
|
49 |
-
# config for decoder
|
50 |
-
decoder:
|
51 |
-
type: 'istftnet' # either hifigan or istftnet
|
52 |
-
resblock_kernel_sizes: [3,7,11]
|
53 |
-
upsample_rates : [10, 6]
|
54 |
-
upsample_initial_channel: 512
|
55 |
-
resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
|
56 |
-
upsample_kernel_sizes: [20, 12]
|
57 |
-
gen_istft_n_fft: 20
|
58 |
-
gen_istft_hop_size: 5
|
59 |
-
|
60 |
-
# speech language model config
|
61 |
-
slm:
|
62 |
-
model: 'microsoft/wavlm-base-plus'
|
63 |
-
sr: 16000 # sampling rate of SLM
|
64 |
-
hidden: 768 # hidden size of SLM
|
65 |
-
nlayers: 13 # number of layers of SLM
|
66 |
-
initial_channel: 64 # initial channels of SLM discriminator head
|
67 |
-
|
68 |
-
# style diffusion model config
|
69 |
-
diffusion:
|
70 |
-
embedding_mask_proba: 0.1
|
71 |
-
# transformer config
|
72 |
-
transformer:
|
73 |
-
num_layers: 3
|
74 |
-
num_heads: 8
|
75 |
-
head_features: 64
|
76 |
-
multiplier: 2
|
77 |
-
|
78 |
-
# diffusion distribution config
|
79 |
-
dist:
|
80 |
-
sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
|
81 |
-
estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
|
82 |
-
mean: -3.0
|
83 |
-
std: 1.0
|
84 |
-
|
85 |
-
loss_params:
|
86 |
-
lambda_mel: 5. # mel reconstruction loss
|
87 |
-
lambda_gen: 1. # generator loss
|
88 |
-
lambda_slm: 1. # slm feature matching loss
|
89 |
-
|
90 |
-
lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
|
91 |
-
lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
|
92 |
-
TMA_epoch: 50 # TMA starting epoch (1st stage)
|
93 |
-
|
94 |
-
lambda_F0: 1. # F0 reconstruction loss (2nd stage)
|
95 |
-
lambda_norm: 1. # norm reconstruction loss (2nd stage)
|
96 |
-
lambda_dur: 1. # duration loss (2nd stage)
|
97 |
-
lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
|
98 |
-
lambda_sty: 1. # style reconstruction loss (2nd stage)
|
99 |
-
lambda_diff: 1. # score matching loss (2nd stage)
|
100 |
-
|
101 |
-
diff_epoch: 20 # style diffusion starting epoch (2nd stage)
|
102 |
-
joint_epoch: 50 # joint training starting epoch (2nd stage)
|
103 |
-
|
104 |
-
optimizer_params:
|
105 |
-
lr: 0.0001 # general learning rate
|
106 |
-
bert_lr: 0.00001 # learning rate for PLBERT
|
107 |
-
ft_lr: 0.00001 # learning rate for acoustic modules
|
108 |
-
|
109 |
-
slmadv_params:
|
110 |
-
min_len: 400 # minimum length of samples
|
111 |
-
max_len: 500 # maximum length of samples
|
112 |
-
batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
|
113 |
-
iter: 10 # update the discriminator every this iterations of generator update
|
114 |
-
thresh: 5 # gradient norm above which the gradient is scaled
|
115 |
-
scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
|
116 |
-
sig: 1.5 # sigma for differentiable duration modeling
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|