therealvul commited on
Commit
fd247fe
·
1 Parent(s): 09e7584

Delete Twilight0/config.yml

Browse files
Files changed (1) hide show
  1. Twilight0/config.yml +0 -117
Twilight0/config.yml DELETED
@@ -1,117 +0,0 @@
1
- log_dir: "Models/Twilight0"
2
- first_stage_path: "first_stage.pth"
3
- save_freq: 1
4
- log_interval: 10
5
- device: "cuda"
6
- epochs_1st: 200 # number of epochs for first stage training (pre-training)
7
- epochs_2nd: 100 # number of peochs for second stage training (joint training)
8
- batch_size: 2
9
- max_len: 400 # maximum number of frames
10
- #pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth"
11
- pretrained_model: "Models/Twilight0/epoch_1st_00063.pth"
12
- second_stage_load_pretrained: false # set to true if the pre-trained model is for 2nd stage
13
- load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters
14
-
15
- F0_path: "Utils/JDC/bst.t7"
16
- ASR_config: "Utils/ASR/config.yml"
17
- ASR_path: "Utils/ASR/epoch_00080.pth"
18
- PLBERT_dir: 'Utils/PLBERT/'
19
-
20
- data_params:
21
- train_data: "Data/train_list.txt"
22
- val_data: "Data/val_list.txt"
23
- root_path: "twilight_data"
24
- OOD_data: "Data/OOD_texts.txt"
25
- min_length: 50 # sample until texts with this size are obtained for OOD texts
26
-
27
- preprocess_params:
28
- sr: 24000
29
- spect_params:
30
- n_fft: 2048
31
- win_length: 1200
32
- hop_length: 300
33
-
34
- model_params:
35
- multispeaker: false
36
-
37
- dim_in: 64
38
- hidden_dim: 512
39
- max_conv_dim: 512
40
- n_layer: 3
41
- n_mels: 80
42
-
43
- n_token: 178 # number of phoneme tokens
44
- max_dur: 50 # maximum duration of a single phoneme
45
- style_dim: 128 # style vector size
46
-
47
- dropout: 0.2
48
-
49
- # config for decoder
50
- decoder:
51
- type: 'istftnet' # either hifigan or istftnet
52
- resblock_kernel_sizes: [3,7,11]
53
- upsample_rates : [10, 6]
54
- upsample_initial_channel: 512
55
- resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
56
- upsample_kernel_sizes: [20, 12]
57
- gen_istft_n_fft: 20
58
- gen_istft_hop_size: 5
59
-
60
- # speech language model config
61
- slm:
62
- model: 'microsoft/wavlm-base-plus'
63
- sr: 16000 # sampling rate of SLM
64
- hidden: 768 # hidden size of SLM
65
- nlayers: 13 # number of layers of SLM
66
- initial_channel: 64 # initial channels of SLM discriminator head
67
-
68
- # style diffusion model config
69
- diffusion:
70
- embedding_mask_proba: 0.1
71
- # transformer config
72
- transformer:
73
- num_layers: 3
74
- num_heads: 8
75
- head_features: 64
76
- multiplier: 2
77
-
78
- # diffusion distribution config
79
- dist:
80
- sigma_data: 0.2 # placeholder for estimate_sigma_data set to false
81
- estimate_sigma_data: true # estimate sigma_data from the current batch if set to true
82
- mean: -3.0
83
- std: 1.0
84
-
85
- loss_params:
86
- lambda_mel: 5. # mel reconstruction loss
87
- lambda_gen: 1. # generator loss
88
- lambda_slm: 1. # slm feature matching loss
89
-
90
- lambda_mono: 1. # monotonic alignment loss (1st stage, TMA)
91
- lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA)
92
- TMA_epoch: 50 # TMA starting epoch (1st stage)
93
-
94
- lambda_F0: 1. # F0 reconstruction loss (2nd stage)
95
- lambda_norm: 1. # norm reconstruction loss (2nd stage)
96
- lambda_dur: 1. # duration loss (2nd stage)
97
- lambda_ce: 20. # duration predictor probability output CE loss (2nd stage)
98
- lambda_sty: 1. # style reconstruction loss (2nd stage)
99
- lambda_diff: 1. # score matching loss (2nd stage)
100
-
101
- diff_epoch: 20 # style diffusion starting epoch (2nd stage)
102
- joint_epoch: 50 # joint training starting epoch (2nd stage)
103
-
104
- optimizer_params:
105
- lr: 0.0001 # general learning rate
106
- bert_lr: 0.00001 # learning rate for PLBERT
107
- ft_lr: 0.00001 # learning rate for acoustic modules
108
-
109
- slmadv_params:
110
- min_len: 400 # minimum length of samples
111
- max_len: 500 # maximum length of samples
112
- batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size
113
- iter: 10 # update the discriminator every this iterations of generator update
114
- thresh: 5 # gradient norm above which the gradient is scaled
115
- scale: 0.01 # gradient scaling factor for predictors from SLM discriminators
116
- sig: 1.5 # sigma for differentiable duration modeling
117
-