log_dir: "Models/Twilight0" first_stage_path: "first_stage.pth" save_freq: 1 log_interval: 10 device: "cuda" epochs_1st: 200 # number of epochs for first stage training (pre-training) epochs_2nd: 100 # number of peochs for second stage training (joint training) batch_size: 2 max_len: 400 # maximum number of frames #pretrained_model: "Models/LibriTTS/epochs_2nd_00020.pth" pretrained_model: "Models/Twilight0/epoch_1st_00063.pth" second_stage_load_pretrained: false # set to true if the pre-trained model is for 2nd stage load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters F0_path: "Utils/JDC/bst.t7" ASR_config: "Utils/ASR/config.yml" ASR_path: "Utils/ASR/epoch_00080.pth" PLBERT_dir: 'Utils/PLBERT/' data_params: train_data: "Data/train_list.txt" val_data: "Data/val_list.txt" root_path: "twilight_data" OOD_data: "Data/OOD_texts.txt" min_length: 50 # sample until texts with this size are obtained for OOD texts preprocess_params: sr: 24000 spect_params: n_fft: 2048 win_length: 1200 hop_length: 300 model_params: multispeaker: false dim_in: 64 hidden_dim: 512 max_conv_dim: 512 n_layer: 3 n_mels: 80 n_token: 178 # number of phoneme tokens max_dur: 50 # maximum duration of a single phoneme style_dim: 128 # style vector size dropout: 0.2 # config for decoder decoder: type: 'istftnet' # either hifigan or istftnet resblock_kernel_sizes: [3,7,11] upsample_rates : [10, 6] upsample_initial_channel: 512 resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]] upsample_kernel_sizes: [20, 12] gen_istft_n_fft: 20 gen_istft_hop_size: 5 # speech language model config slm: model: 'microsoft/wavlm-base-plus' sr: 16000 # sampling rate of SLM hidden: 768 # hidden size of SLM nlayers: 13 # number of layers of SLM initial_channel: 64 # initial channels of SLM discriminator head # style diffusion model config diffusion: embedding_mask_proba: 0.1 # transformer config transformer: num_layers: 3 num_heads: 8 head_features: 64 multiplier: 2 # diffusion distribution config dist: sigma_data: 0.2 # placeholder for estimate_sigma_data set to false estimate_sigma_data: true # estimate sigma_data from the current batch if set to true mean: -3.0 std: 1.0 loss_params: lambda_mel: 5. # mel reconstruction loss lambda_gen: 1. # generator loss lambda_slm: 1. # slm feature matching loss lambda_mono: 1. # monotonic alignment loss (1st stage, TMA) lambda_s2s: 1. # sequence-to-sequence loss (1st stage, TMA) TMA_epoch: 50 # TMA starting epoch (1st stage) lambda_F0: 1. # F0 reconstruction loss (2nd stage) lambda_norm: 1. # norm reconstruction loss (2nd stage) lambda_dur: 1. # duration loss (2nd stage) lambda_ce: 20. # duration predictor probability output CE loss (2nd stage) lambda_sty: 1. # style reconstruction loss (2nd stage) lambda_diff: 1. # score matching loss (2nd stage) diff_epoch: 20 # style diffusion starting epoch (2nd stage) joint_epoch: 50 # joint training starting epoch (2nd stage) optimizer_params: lr: 0.0001 # general learning rate bert_lr: 0.00001 # learning rate for PLBERT ft_lr: 0.00001 # learning rate for acoustic modules slmadv_params: min_len: 400 # minimum length of samples max_len: 500 # maximum length of samples batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size iter: 10 # update the discriminator every this iterations of generator update thresh: 5 # gradient norm above which the gradient is scaled scale: 0.01 # gradient scaling factor for predictors from SLM discriminators sig: 1.5 # sigma for differentiable duration modeling