albert-tune / README.md
theunmans's picture
End of training
6c30b24 verified
metadata
base_model: textattack/albert-base-v2-imdb
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: albert-tune
    results: []

albert-tune

This model is a fine-tuned version of textattack/albert-base-v2-imdb on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8791
  • Accuracy: 0.6857
  • F1: 0.7039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.8887 1.0 53 1.8444 0.1929 0.1619
1.6055 2.0 106 1.5226 0.5929 0.5821
1.2048 3.0 159 1.1546 0.5857 0.5779
0.7243 4.0 212 0.9967 0.6214 0.6173
0.6455 5.0 265 0.9122 0.6857 0.6941
0.9166 6.0 318 0.8791 0.6857 0.7039
0.505 7.0 371 1.0556 0.6643 0.6665

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1