--- base_model: textattack/albert-base-v2-imdb tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: albert-tune results: [] --- # albert-tune This model is a fine-tuned version of [textattack/albert-base-v2-imdb](https://huggingface.co/textattack/albert-base-v2-imdb) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8791 - Accuracy: 0.6857 - F1: 0.7039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.8887 | 1.0 | 53 | 1.8444 | 0.1929 | 0.1619 | | 1.6055 | 2.0 | 106 | 1.5226 | 0.5929 | 0.5821 | | 1.2048 | 3.0 | 159 | 1.1546 | 0.5857 | 0.5779 | | 0.7243 | 4.0 | 212 | 0.9967 | 0.6214 | 0.6173 | | 0.6455 | 5.0 | 265 | 0.9122 | 0.6857 | 0.6941 | | 0.9166 | 6.0 | 318 | 0.8791 | 0.6857 | 0.7039 | | 0.505 | 7.0 | 371 | 1.0556 | 0.6643 | 0.6665 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1