--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-finetuning results: [] --- # distilbert-finetuning This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8622 - Accuracy: 0.7214 - F1: 0.7360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.9352 | 1.0 | 53 | 1.9292 | 0.2286 | 0.1424 | | 1.7661 | 2.0 | 106 | 1.6808 | 0.4 | 0.3464 | | 1.5131 | 3.0 | 159 | 1.4096 | 0.6357 | 0.6419 | | 0.9411 | 4.0 | 212 | 1.0246 | 0.6714 | 0.6749 | | 0.5521 | 5.0 | 265 | 0.8622 | 0.7214 | 0.7360 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1