--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-multi-finetuning results: [] --- # distilbert-multi-finetuning This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8003 - Accuracy: 0.8017 - F1: 0.7994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.9844 | 1.0 | 65741 | 1.0179 | 0.7508 | 0.7414 | | 1.0829 | 2.0 | 131482 | 0.9029 | 0.7744 | 0.7687 | | 0.5999 | 3.0 | 197223 | 0.8359 | 0.7900 | 0.7870 | | 0.4741 | 4.0 | 262964 | 0.8003 | 0.8017 | 0.7994 | | 0.7136 | 5.0 | 328705 | 0.8279 | 0.8060 | 0.8041 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1