|
architecture: |
|
backbone_dtype: int4 |
|
force_embedding_gradients: false |
|
gradient_checkpointing: true |
|
intermediate_dropout: 0.0 |
|
pretrained: true |
|
pretrained_weights: '' |
|
augmentation: |
|
random_parent_probability: 0.0 |
|
skip_parent_probability: 0.0 |
|
token_mask_probability: 0.05 |
|
dataset: |
|
add_eos_token_to_answer: true |
|
add_eos_token_to_prompt: true |
|
add_eos_token_to_system: true |
|
answer_column: "Kontekst: informasjonsteknologi, tagging, databaseadministrasjon,\ |
|
\ s\xF8k\nOversettelse:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeide med\ |
|
\ koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\ |
|
\ har aktivert dette, har du muligheten til \xE5 opprette koder. Koder er\ |
|
\ organisert som mapper. 1) Det er mulig \xE5 knytte faktene dine til s\xE5\ |
|
\ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\ |
|
\ Innholdet som tilh\xF8rer de tilknyttede kodene vil bli vist. 3) Du kan\ |
|
\ ogs\xE5 s\xF8ke ved \xE5 bruke mer enn \xE9n kode ved \xE5 separere dem\ |
|
\ med komma (,).\nMer naturlig:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeid\ |
|
\ med koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\ |
|
\ har aktivert denne funksjonen, har du muligheten til \xE5 opprette koder.\ |
|
\ Koder er organisert som mapper. 1) Du kan knytte faktene dine til s\xE5\ |
|
\ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\ |
|
\ Innholdet som er knyttet til kodene vil bli vist. 3) Du kan ogs\xE5 s\xF8\ |
|
ke ved \xE5 bruke flere koder samtidig ved \xE5 separere dem med komma (,).\r" |
|
chatbot_author: H2O.ai |
|
chatbot_name: h2oGPT |
|
data_sample: 1.0 |
|
data_sample_choice: |
|
- Train |
|
- Validation |
|
limit_chained_samples: false |
|
mask_prompt_labels: true |
|
parent_id_column: None |
|
personalize: false |
|
prompt_column: |
|
- 'Oversett til Norsk: |
|
|
|
Definition:. (Wikipedia, 2008-08-07). Working with Tags on the factline-platform:. |
|
If your system or platform administrator activated this , you have the possibility |
|
to create tags.. In fact tags they are organised like folders.. 1) It is possible |
|
to link your facts to as many tags you want.. 2) Search for tags with "factlist |
|
& search". The content belonging to the linked tags will be shown.. 3) Also |
|
search using more than one tag by separating them with a comma (,).' |
|
system_column: None |
|
text_answer_separator: <|answer|> |
|
text_prompt_start: <|prompt|> |
|
text_system_start: <|system|> |
|
train_dataframe: /fp/projects01/ec281/h2o-llmstudio/data/user/en-nb-15k/en-nb-15k.csv |
|
validation_dataframe: None |
|
validation_size: 0.04 |
|
validation_strategy: automatic |
|
environment: |
|
compile_model: false |
|
deepspeed_reduce_bucket_size: 1000000 |
|
deepspeed_stage3_param_persistence_threshold: 1000000 |
|
deepspeed_stage3_prefetch_bucket_size: 1000000 |
|
find_unused_parameters: false |
|
gpus: |
|
- '0' |
|
huggingface_branch: main |
|
mixed_precision: true |
|
number_of_workers: 8 |
|
seed: -1 |
|
trust_remote_code: true |
|
use_deepspeed: false |
|
experiment_name: mist-lang |
|
llm_backbone: mistralai/Mistral-7B-v0.1 |
|
logging: |
|
logger: None |
|
neptune_project: '' |
|
output_directory: /fp/projects01/ec281/h2o-llmstudio/output/user/mist-lang/ |
|
prediction: |
|
batch_size_inference: 0 |
|
do_sample: false |
|
max_length_inference: 256 |
|
metric: Perplexity |
|
metric_gpt_model: gpt-3.5-turbo-0301 |
|
min_length_inference: 2 |
|
num_beams: 1 |
|
num_history: 4 |
|
repetition_penalty: 1.2 |
|
stop_tokens: '' |
|
temperature: 0.0 |
|
top_k: 0 |
|
top_p: 1.0 |
|
problem_type: text_causal_language_modeling |
|
tokenizer: |
|
add_prefix_space: false |
|
add_prompt_answer_tokens: false |
|
max_length: 2048 |
|
max_length_answer: 1024 |
|
max_length_prompt: 1024 |
|
padding_quantile: 1.0 |
|
use_fast: true |
|
training: |
|
batch_size: 6 |
|
differential_learning_rate: 1.0e-05 |
|
differential_learning_rate_layers: [] |
|
drop_last_batch: true |
|
epochs: 4 |
|
evaluate_before_training: false |
|
evaluation_epochs: 1.0 |
|
grad_accumulation: 1 |
|
gradient_clip: 0.0 |
|
learning_rate: 0.0001 |
|
lora: true |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_r: 64 |
|
lora_target_modules: q_proj,k_proj,down_proj,v_proj,o_proj,gate_proj,up_proj |
|
loss_function: TokenAveragedCrossEntropy |
|
optimizer: AdamW |
|
save_best_checkpoint: true |
|
schedule: Cosine |
|
train_validation_data: false |
|
warmup_epochs: 0.1 |
|
weight_decay: 0.0 |
|
|