architecture: backbone_dtype: int4 force_embedding_gradients: false gradient_checkpointing: true intermediate_dropout: 0.0 pretrained: true pretrained_weights: '' augmentation: random_parent_probability: 0.0 skip_parent_probability: 0.0 token_mask_probability: 0.05 dataset: add_eos_token_to_answer: true add_eos_token_to_prompt: true add_eos_token_to_system: true answer_column: "Kontekst: informasjonsteknologi, tagging, databaseadministrasjon,\ \ s\xF8k\nOversettelse:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeide med\ \ koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\ \ har aktivert dette, har du muligheten til \xE5 opprette koder. Koder er\ \ organisert som mapper. 1) Det er mulig \xE5 knytte faktene dine til s\xE5\ \ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\ \ Innholdet som tilh\xF8rer de tilknyttede kodene vil bli vist. 3) Du kan\ \ ogs\xE5 s\xF8ke ved \xE5 bruke mer enn \xE9n kode ved \xE5 separere dem\ \ med komma (,).\nMer naturlig:\nDefinisjon: (Wikipedia, 2008-08-07). Arbeid\ \ med koder p\xE5 factline-plattformen: Hvis systemet eller plattformadministratoren\ \ har aktivert denne funksjonen, har du muligheten til \xE5 opprette koder.\ \ Koder er organisert som mapper. 1) Du kan knytte faktene dine til s\xE5\ \ mange koder du \xF8nsker. 2) S\xF8k etter koder med 'factlist & search'.\ \ Innholdet som er knyttet til kodene vil bli vist. 3) Du kan ogs\xE5 s\xF8\ ke ved \xE5 bruke flere koder samtidig ved \xE5 separere dem med komma (,).\r" chatbot_author: H2O.ai chatbot_name: h2oGPT data_sample: 1.0 data_sample_choice: - Train - Validation limit_chained_samples: false mask_prompt_labels: true parent_id_column: None personalize: false prompt_column: - 'Oversett til Norsk: Definition:. (Wikipedia, 2008-08-07). Working with Tags on the factline-platform:. If your system or platform administrator activated this , you have the possibility to create tags.. In fact tags they are organised like folders.. 1) It is possible to link your facts to as many tags you want.. 2) Search for tags with "factlist & search". The content belonging to the linked tags will be shown.. 3) Also search using more than one tag by separating them with a comma (,).' system_column: None text_answer_separator: <|answer|> text_prompt_start: <|prompt|> text_system_start: <|system|> train_dataframe: /fp/projects01/ec281/h2o-llmstudio/data/user/en-nb-15k/en-nb-15k.csv validation_dataframe: None validation_size: 0.04 validation_strategy: automatic environment: compile_model: false deepspeed_reduce_bucket_size: 1000000 deepspeed_stage3_param_persistence_threshold: 1000000 deepspeed_stage3_prefetch_bucket_size: 1000000 find_unused_parameters: false gpus: - '0' huggingface_branch: main mixed_precision: true number_of_workers: 8 seed: -1 trust_remote_code: true use_deepspeed: false experiment_name: mist-lang llm_backbone: mistralai/Mistral-7B-v0.1 logging: logger: None neptune_project: '' output_directory: /fp/projects01/ec281/h2o-llmstudio/output/user/mist-lang/ prediction: batch_size_inference: 0 do_sample: false max_length_inference: 256 metric: Perplexity metric_gpt_model: gpt-3.5-turbo-0301 min_length_inference: 2 num_beams: 1 num_history: 4 repetition_penalty: 1.2 stop_tokens: '' temperature: 0.0 top_k: 0 top_p: 1.0 problem_type: text_causal_language_modeling tokenizer: add_prefix_space: false add_prompt_answer_tokens: false max_length: 2048 max_length_answer: 1024 max_length_prompt: 1024 padding_quantile: 1.0 use_fast: true training: batch_size: 6 differential_learning_rate: 1.0e-05 differential_learning_rate_layers: [] drop_last_batch: true epochs: 4 evaluate_before_training: false evaluation_epochs: 1.0 grad_accumulation: 1 gradient_clip: 0.0 learning_rate: 0.0001 lora: true lora_alpha: 16 lora_dropout: 0.05 lora_r: 64 lora_target_modules: q_proj,k_proj,down_proj,v_proj,o_proj,gate_proj,up_proj loss_function: TokenAveragedCrossEntropy optimizer: AdamW save_best_checkpoint: true schedule: Cosine train_validation_data: false warmup_epochs: 0.1 weight_decay: 0.0