thien1892's picture
re train model from hub 5m
026cee9
raw
history blame
16.8 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9543a9790>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9543a9820>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9543a98b0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9543a9940>",
"_build": "<function ActorCriticPolicy._build at 0x7fb9543a99d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fb9543a9a60>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb9543a9af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9543a9b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fb9543a9c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9543a9ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9543a9d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9543a9dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fb9543a0de0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 64,
"num_timesteps": 1048576,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673417637782763919,
"learning_rate": 8e-06,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+4Mb3oLXtjYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAACZBsr1cu0S6mu7DuuC+xba4/9k6YgcDOgAAgD8AAAAAM526PK4dt7zDuN07Rp2DPY+JtrywLd47AACAPwAAgD/N4LQ8xJydPS8zDL4Hkti+zHuxvSPZWr0AAAAAAAAAAMCe970EYa0/tukSv8tDvr5GeSS+zojEvgAAAAAAAAAAYPQUvraaErwn8CA7s1cUOWTggz26flO6AACAPwAAgD/NaCI8gQGxPY7SRr4HXOi+yLdivk7UVzwAAAAAAAAAAAA4vjyfzIm7JsPYPRQldTwAHb68sgFTPQAAgD8AAIA/zWxhO3vwl7pJFSOzfoKMsNEjFDsKRsMzAACAPwAAgD8ADH28uOTBu3P6db3k3cK7//MpPRKSxr0AAAAAAACAPzOMRD3A0Ys+YKJpvsWc4L7F9NG9IMncvQAAAAAAAAAAc7KKPUmUKD122wK+UOm2vs2lv70NTjS9AAAAAAAAAACaH608YZKIPf4OAjqjGte+FUIsvc65DT0AAAAAAAAAAJrB87wGuro/AvYrvsWz3b2CS4695a5PvQAAAAAAAAAAzeGYvJ9mubviTQI7egCWPIKHHT0ykX29AACAPwAAgD+aJ1Y9CbV3PXCuXL5i1dS+1q3HvdqGRr0AAAAAAAAAAIA5ej73wLw+5U8Fv7+7+r7ZpZ49O9myvgAAAAAAAAAAQPXSvRi0iz0fBII+9yHCvoWEVT1/uRY9AAAAAAAAAABg9yc+T2RdP0AybD6sMhm/WDe5Pugucz0AAAAAAAAAABpVub1uzIG8To6qPHMUqTwYYeI9NmCcvQAAAAAAAIA/Zs6bPcE9jD+DA4Y+h/Qmv2QALz6LJU0+AAAAAAAAAAAAsk48HDB5vHVjZj5wVSi+hfQ+vWJWcL8AAIA/AACAPwDce7yub7Q/xqBFv697Jr1w/4E8W5sNPgAAAAAAAAAAQG6RPV4PAT/mRH++vCQEv57ON73oog2+AAAAAAAAAAAAcBw+vxQ8P2oW7bz5qR6/50StPr2P170AAAAAAAAAAGa+Ujvciy28wA3ePF6wCT1Rf4s9qLgUuwAAgD8AAIA/mtZDPXvO1LqrOui6wb2MPM1byTrCc3S9AACAPwAAgD9NpwQ9ZjV4P/ZbZz1PaRq/BZ70PTpgID0AAAAAAAAAAACRAz19Fgk8ypEQvll0wL7VNUq+htjlPgAAgD8AAAAAzdwjvR00Bj+Wa8C90VYQv2bopL1ErL69AAAAAAAAAADNipU8ezKGuu39eTe5M+wym2lnOdQqj7YAAIA/AACAP+buRL7iyZ8/fkELv00eFb/BN6u+m351vgAAAAAAAAAAmmGEvFzPfroQkho8hMIiOd+rebumcB04AACAPwAAgD+a8MU8yuGzP8s6VT5S1RS+JdQzPciPUD4AAAAAAAAAAGZLkr2s64Y/So57vvc/Jr/GcBS+zuj6vQAAAAAAAAAAzS4uvNTfu7yxtiM9yyNhvRsEeL26+Ma+AACAPwAAgD+amXC5EnqGPKMaVD2NOb++urklvYnhiTwAAAAAAAAAAEBPo73hyOu8zVh0vhzAKD1lJZS9KagHPAAAgD8AAIA/xtsrvsXhzz52Wuc9L1wAv/ZfbL5YZgo+AAAAAAAAAACzolQ9x7imPuVYq71Gnvu+Z+gdPTqwDL0AAAAAAAAAAAA7n7xxNSa79O48PBqZmDxWMmM8yjyDvQAAgD8AAIA/Zm2pPBhp8D6bpHi9mu39vqNnpjzINf68AAAAAAAAAADahLy9M7JPPwDBVb3Gfym/SPYdvgYHmT0AAAAAAAAAAGZOJD2Fn/Q6wLudvcPonr7xp4S93qfVPgAAgD8AAAAAzSDZu6jzqLx2TAM+0G5FPYtQFr5OLxY+AACAPwAAgD8AjHU8rjGpugIHR7pgoiS2L6ZUuMiCZDkAAIA/AACAPxrke71FJoc8fBA+Psfhyb4jHEk9xe4VvAAAAAAAAAAAmiMovNzEtj8dYAO/EGy6PvAoIjwiwp89AAAAAAAAAACzn0m9KZhjulCTM7bvcVOxu6KHulWoYTUAAIA/AACAPyAfQj5V1Kc/PXPHPvDIIL/qidc+G0zNPQAAAAAAAAAAM9XBPPZcNLpqRIc49rsRNEFNSjvK95u3AACAPwAAgD8AuMU84rpAP0tiDzv6/xu/QMG4PaCd4TwAAAAAAAAAAHrrNj6r+qg/T3YdP/WI/r6Wkrk+k1HLPgAAAAAAAAAAc1GOva21OT8y0Ti95ocPv2Nw+b2wcXg9AAAAAAAAAADNyD0865o/P2puHL3L7xa/WvNiPfIN3bwAAAAAAAAAAOb6BD2DQCC8uGq+vQERAj20BWM9Avc9OgAAgD8AAIA/TVJuvXtGwLpWBz40ScCQLVnkVbiCgaOzAACAPwAAgD/NmEe8SEuTuq/fPbMs/5Uv2L/4ubb+uzMAAIA/AACAP2YH7bwfpbi5llw7O7SdfjjCqBa7AtbnuQAAAAAAAAAA5o0HvXG9bDgu2F4+EelPvu5Rdjv90I6/AAAAAAAAgD/Nrg+9j5YxuuhXXzxK2U01//meOmp2LTQAAAAAAAAAABr7n712Opg/QFfFvpoDKb+pFsa9wLRyvgAAAAAAAAAAMwNWuzQgi7xLjCk9qyVEvuezC70qt8++AACAPwAAgD8zR3s87Kb9uxNl0rsPk688FXZjPRqzkb0AAIA/AACAPxNfGb7vHJQ/8Fbnvu2yIL+EtI6+JRhPvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDogQVw4dckCUhpRSlIwBbJRLtYwBdJRHQH5fGwaBI4F1fZQoaAZoCWgPQwjY8PRKmYdyQJSGlFKUaBVL0GgWR0B+XwwHqu8sdX2UKGgGaAloD0MIOlj/57DAcUCUhpRSlGgVS9xoFkdAfl+zRx95QnV9lChoBmgJaA9DCBYW3A84O3JAlIaUUpRoFUu4aBZHQH5gCcslLOB1fZQoaAZoCWgPQwhjmule56JzQJSGlFKUaBVLvmgWR0B+YLFZPl+3dX2UKGgGaAloD0MIaThlbv5OckCUhpRSlGgVS8BoFkdAfmLn003wTnV9lChoBmgJaA9DCMZq8/+q6HFAlIaUUpRoFUvvaBZHQH5jh+az/qB1fZQoaAZoCWgPQwgB9zx/2khyQJSGlFKUaBVL62gWR0B+Y4Szw+dLdX2UKGgGaAloD0MIymyQScbUckCUhpRSlGgVS7NoFkdAfmU+aBqbjXV9lChoBmgJaA9DCM4WEFoPK01AlIaUUpRoFUt5aBZHQH5m0IToMa11fZQoaAZoCWgPQwh1dcdiG19zQJSGlFKUaBVL1GgWR0B+Zr5RCQcQdX2UKGgGaAloD0MIo3a/CnCCb0CUhpRSlGgVS75oFkdAfmjvtMPBi3V9lChoBmgJaA9DCJfl6zK8qHJAlIaUUpRoFUveaBZHQH5pMPrfLs91fZQoaAZoCWgPQwi46jpUU0dyQJSGlFKUaBVL2GgWR0B+acwGnn+ydX2UKGgGaAloD0MIqwfMQ6Zrc0CUhpRSlGgVS/1oFkdAfmrMKCxu9HV9lChoBmgJaA9DCJutvOR/VnNAlIaUUpRoFUvQaBZHQH5rXtKIznB1fZQoaAZoCWgPQwg0LbEyWp9xQJSGlFKUaBVL1GgWR0B+bAKsuFpPdX2UKGgGaAloD0MIs5quJ3qwcUCUhpRSlGgVS8doFkdAfmzy2QXAM3V9lChoBmgJaA9DCNLijGHOlG9AlIaUUpRoFUvDaBZHQH5tv2TPjXF1fZQoaAZoCWgPQwjBkUCDzbpxQJSGlFKUaBVL1GgWR0B+biIi1RcedX2UKGgGaAloD0MIwck2cMd0cECUhpRSlGgVS8JoFkdAfm4J53Tuv3V9lChoBmgJaA9DCBdKJqe2WHBAlIaUUpRoFUvGaBZHQH5xTuWrwOR1fZQoaAZoCWgPQwicNuM0xAVyQJSGlFKUaBVL5WgWR0B+c8ofCAMEdX2UKGgGaAloD0MI3Zcz2xVcckCUhpRSlGgVS9FoFkdAfnkloDgZTHV9lChoBmgJaA9DCEyL+iQ3eHNAlIaUUpRoFUu6aBZHQH55G7jDKo11fZQoaAZoCWgPQwisWPym8LtzQJSGlFKUaBVL5WgWR0B+eddD6WPcdX2UKGgGaAloD0MIQl96+3NFckCUhpRSlGgVS+RoFkdAfnpomois4nV9lChoBmgJaA9DCAirsYS1P0JAlIaUUpRoFUuHaBZHQH57cEaESM91fZQoaAZoCWgPQwhApUqUvbRzQJSGlFKUaBVLy2gWR0B+e7OKO1fFdX2UKGgGaAloD0MIpl8i3vq1c0CUhpRSlGgVS9VoFkdAfn2URFqi5HV9lChoBmgJaA9DCA1QGmoUgmhAlIaUUpRoFU3oA2gWR0B+f/1bqyGBdX2UKGgGaAloD0MIkpT0MHSgckCUhpRSlGgVS71oFkdAfoBIoVmBfHV9lChoBmgJaA9DCAwepn3zxmFAlIaUUpRoFU3oA2gWR0B+gNy5qdpZdX2UKGgGaAloD0MIhSLdz+nYckCUhpRSlGgVS+BoFkdAfoFBWxQizXV9lChoBmgJaA9DCFqBIasbp3JAlIaUUpRoFUuyaBZHQH6BOH8CPp91fZQoaAZoCWgPQwgXnSy1nkdyQJSGlFKUaBVLs2gWR0B+gaMWGh24dX2UKGgGaAloD0MIrBqEud3yckCUhpRSlGgVS7VoFkdAfoGIdU83dnV9lChoBmgJaA9DCDi6SnfXdHNAlIaUUpRoFUvUaBZHQH6B1YZEUj91fZQoaAZoCWgPQwjiWYKMQGdzQJSGlFKUaBVL92gWR0B+gtDzAeq8dX2UKGgGaAloD0MIAn6NJIHxckCUhpRSlGgVS9poFkdAfoO0btJFs3V9lChoBmgJaA9DCN6tLNFZcFBAlIaUUpRoFUuQaBZHQH6EB7NSqER1fZQoaAZoCWgPQwjbboJvGo5zQJSGlFKUaBVLxGgWR0B+hGSdOIqLdX2UKGgGaAloD0MI0LNZ9fnOcUCUhpRSlGgVS9toFkdAfocrhzeXRnV9lChoBmgJaA9DCGaC4VwD9XJAlIaUUpRoFUvXaBZHQH6Hq0Y0l7d1fZQoaAZoCWgPQwgZc9cSsoZyQJSGlFKUaBVLy2gWR0B+h/tD2JzldX2UKGgGaAloD0MI1A0UeKfYbkCUhpRSlGgVS8ZoFkdAfosd/8VHnXV9lChoBmgJaA9DCOPhPQeWWHJAlIaUUpRoFUvDaBZHQH6Lf4mCyyF1fZQoaAZoCWgPQwjJchJKX9dxQJSGlFKUaBVL7GgWR0B+i3gP3BYWdX2UKGgGaAloD0MIk+UklP5IcUCUhpRSlGgVS7ZoFkdAfpAE3bVSXXV9lChoBmgJaA9DCBLZB1mWLnFAlIaUUpRoFUvyaBZHQH6QP91loUV1fZQoaAZoCWgPQwgLtDukmJVxQJSGlFKUaBVL0WgWR0B+kIKPXCj2dX2UKGgGaAloD0MIRZxOspXrcUCUhpRSlGgVS9VoFkdAfpKER8MNMHV9lChoBmgJaA9DCKN3KuAeV3NAlIaUUpRoFUu5aBZHQH6XHnIQvpR1fZQoaAZoCWgPQwhK8fEJWT9xQJSGlFKUaBVLumgWR0B+l4JZ4fOldX2UKGgGaAloD0MI68TleAXnbkCUhpRSlGgVS9FoFkdAfpdw2ETQFHV9lChoBmgJaA9DCIY8ghup+nFAlIaUUpRoFUvJaBZHQH6ZuO801qF1fZQoaAZoCWgPQwi/LO3UXEJyQJSGlFKUaBVLv2gWR0B+mgLLIPsidX2UKGgGaAloD0MIzy9K0F/IckCUhpRSlGgVS9FoFkdAfpqUwi7kGXV9lChoBmgJaA9DCLhbkgN2pXRAlIaUUpRoFUvVaBZHQH6a89Oh0yR1fZQoaAZoCWgPQwglPneCPahzQJSGlFKUaBVLumgWR0B+m+gvlEJCdX2UKGgGaAloD0MImKPH720qcUCUhpRSlGgVS9toFkdAfpxEzwc5sHV9lChoBmgJaA9DCEOM17xqtnNAlIaUUpRoFUvhaBZHQH6citFKCg91fZQoaAZoCWgPQwhYkGYsmko9QJSGlFKUaBVLXWgWR0B+nH24/eLvdX2UKGgGaAloD0MI9aCgFK12bkCUhpRSlGgVS8loFkdAfp27/4qPO3V9lChoBmgJaA9DCObLC7CP93FAlIaUUpRoFUu2aBZHQH6eD7qIJqt1fZQoaAZoCWgPQwgXuDzWzBNxQJSGlFKUaBVL22gWR0B+nzuDzyz5dX2UKGgGaAloD0MIEce6uI14c0CUhpRSlGgVS8FoFkdAfp/MLncL0HV9lChoBmgJaA9DCOs6VFMScnFAlIaUUpRoFUvTaBZHQH6fx1PnB+F1fZQoaAZoCWgPQwhtrMQ8K25QQJSGlFKUaBVLkWgWR0B+n8Q8OkLydX2UKGgGaAloD0MI6NzteinLcUCUhpRSlGgVS8poFkdAfqC23rleW3V9lChoBmgJaA9DCMZQTrSrBHJAlIaUUpRoFUvBaBZHQH6hOY+jdpJ1fZQoaAZoCWgPQwjOUUfHldRxQJSGlFKUaBVLt2gWR0B+oTmZE2HddX2UKGgGaAloD0MIWtb9Y6E5ckCUhpRSlGgVS9BoFkdAfqHfcvduYXV9lChoBmgJaA9DCKT+eoWF4HJAlIaUUpRoFUu2aBZHQH6j9MwlByF1fZQoaAZoCWgPQwiqZWt9kbJwQJSGlFKUaBVLvWgWR0B+o/EjxCpndX2UKGgGaAloD0MIf2q8dBOzb0CUhpRSlGgVS7toFkdAfqSDPGACn3V9lChoBmgJaA9DCBTsv87NIXJAlIaUUpRoFUu4aBZHQH6ljxsl9jR1fZQoaAZoCWgPQwgYsOQqFjlzQJSGlFKUaBVLzWgWR0B+ptWJaaCudX2UKGgGaAloD0MI1NSytb5yckCUhpRSlGgVS9toFkdAfqqAUcn3L3V9lChoBmgJaA9DCJ1/u+xXum9AlIaUUpRoFUvEaBZHQH6r5/kNnXd1fZQoaAZoCWgPQwjUCz7NCVZyQJSGlFKUaBVL0mgWR0B+rL+ZPVNIdX2UKGgGaAloD0MIl1eut03QckCUhpRSlGgVTS8BaBZHQH6t/qkdmxt1fZQoaAZoCWgPQwhDy7p/LLRyQJSGlFKUaBVL6mgWR0B+sT6k690zdX2UKGgGaAloD0MIa2KBryi6c0CUhpRSlGgVS8FoFkdAfrNJSR8tw3V9lChoBmgJaA9DCO2A64oZOXFAlIaUUpRoFUvAaBZHQH60UHyEtd11fZQoaAZoCWgPQwgoSddMvlVzQJSGlFKUaBVL8WgWR0B+tdXwLE1mdX2UKGgGaAloD0MInGuYobH+cUCUhpRSlGgVS7NoFkdAfrXVWCEpRXV9lChoBmgJaA9DCAiUTbmCYXNAlIaUUpRoFUvLaBZHQH63Z9d/rjZ1fZQoaAZoCWgPQwhqpRDIpVNxQJSGlFKUaBVLv2gWR0B+uTmbLEDRdX2UKGgGaAloD0MInKOOjiuScUCUhpRSlGgVS9poFkdAfrnR4QjD9HV9lChoBmgJaA9DCE2+2eYGXHJAlIaUUpRoFUvGaBZHQH669t2s7uF1fZQoaAZoCWgPQwiu00hLZXJxQJSGlFKUaBVL0WgWR0B+u0glnh86dX2UKGgGaAloD0MIhZSfVLtzckCUhpRSlGgVS8toFkdAfrvwHJLdvnV9lChoBmgJaA9DCLXDX5M1nXJAlIaUUpRoFUviaBZHQH6867ZnL7p1fZQoaAZoCWgPQwi+27xxUiRwQJSGlFKUaBVLzWgWR0B+veemNzbOdX2UKGgGaAloD0MIQBL27eT7cUCUhpRSlGgVS9NoFkdAfr41L8Jla3V9lChoBmgJaA9DCHsuU5OgxHBAlIaUUpRoFUvqaBZHQH6+sNH6Mzd1fZQoaAZoCWgPQwj3yrxVV0xyQJSGlFKUaBVL0mgWR0B+wIYUFjd6dX2UKGgGaAloD0MIaF4Ou+83cECUhpRSlGgVS9VoFkdAfsL1PWQOnXV9lChoBmgJaA9DCEs9C0L5VnNAlIaUUpRoFUvdaBZHQH7C5qmCROl1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 1660,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"reset_num_timesteps": true
}