Upload train_and_push.py
Browse files- train_and_push.py +91 -0
train_and_push.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
# Virtual display
|
4 |
+
from pyvirtualdisplay import Display
|
5 |
+
virtual_display = Display(visible=0, size=(1400, 900))
|
6 |
+
virtual_display.start()
|
7 |
+
|
8 |
+
# Import package
|
9 |
+
import gym
|
10 |
+
from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
|
11 |
+
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
|
12 |
+
from stable_baselines3 import PPO
|
13 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
14 |
+
from stable_baselines3.common.env_util import make_vec_env
|
15 |
+
from stable_baselines3.common.vec_env import DummyVecEnv
|
16 |
+
|
17 |
+
def str2bool(v):
|
18 |
+
if isinstance(v, bool):
|
19 |
+
return v
|
20 |
+
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
21 |
+
return True
|
22 |
+
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
23 |
+
return False
|
24 |
+
else:
|
25 |
+
raise argparse.ArgumentTypeError('Boolean value expected.')
|
26 |
+
|
27 |
+
parser = argparse.ArgumentParser()
|
28 |
+
parser.add_argument('--model_name', dest='model_name',
|
29 |
+
default="ppo-LunarLander-v2", type=str, help='model name')
|
30 |
+
parser.add_argument('--total_timesteps', dest='total_timesteps',
|
31 |
+
default=1000000, type=int, help='total timesteps')
|
32 |
+
parser.add_argument('--n_envs', dest='n_envs',
|
33 |
+
default=16, type=int, help='n_envs')
|
34 |
+
parser.add_argument('--repo_id', dest='repo_id',
|
35 |
+
default="thien1892/LunarLander-v2-ppo", type=str, help='repo_id')
|
36 |
+
parser.add_argument('--commit_message', dest='commit_message',
|
37 |
+
default="Upload PPO LunarLander-v2 trained agent", type=str, help='commit_message')
|
38 |
+
parser.add_argument('--re_train', dest='re_train',
|
39 |
+
default = True, type= str2bool, help='commit_message')
|
40 |
+
parser.add_argument('--id_retrain', dest='id_retrain',
|
41 |
+
default="thien1892/LunarLander-v2-ppo-5m", type=str, help='id_retrain')
|
42 |
+
parser.add_argument('--filename_retrain', dest='filename_retrain',
|
43 |
+
default="ppo-LunarLander-v2-5m.zip", type=str, help='filename_retrain')
|
44 |
+
parser.add_argument('--learning_rate', dest='learning_rate',
|
45 |
+
default=1e-4, type=float, help='learning_rate')
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
# Create the environment
|
50 |
+
env = make_vec_env('LunarLander-v2', n_envs= args.n_envs)
|
51 |
+
|
52 |
+
# Model
|
53 |
+
if not args.re_train :
|
54 |
+
model = PPO(
|
55 |
+
policy = 'MlpPolicy',
|
56 |
+
env = env,
|
57 |
+
n_steps = 1024,
|
58 |
+
batch_size = 64,
|
59 |
+
n_epochs = 4,
|
60 |
+
gamma = 0.999,
|
61 |
+
gae_lambda = 0.98,
|
62 |
+
ent_coef = 0.01,
|
63 |
+
learning_rate = args.learning_rate,
|
64 |
+
verbose=1)
|
65 |
+
else:
|
66 |
+
checkpoint = load_from_hub(args.id_retrain, args.filename_retrain)
|
67 |
+
model = PPO.load(checkpoint, reset_num_timesteps=True, print_system_info=True, env = env, learning_rate = args.learning_rate)
|
68 |
+
|
69 |
+
# Train
|
70 |
+
model.learn(total_timesteps = args.total_timesteps)
|
71 |
+
|
72 |
+
# Save the model
|
73 |
+
model.save(args.model_name)
|
74 |
+
|
75 |
+
# Evaluate model
|
76 |
+
eval_env = gym.make("LunarLander-v2") # create new environment
|
77 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
78 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
79 |
+
|
80 |
+
# Push to HF hub
|
81 |
+
env_id = "LunarLander-v2"
|
82 |
+
eval_env = DummyVecEnv([lambda: gym.make(env_id)])
|
83 |
+
model_architecture = "PPO"
|
84 |
+
|
85 |
+
package_to_hub(model = model, # Our trained model
|
86 |
+
model_name = args.model_name, # The name of our trained model
|
87 |
+
model_architecture = model_architecture, # The model architecture we used: in our case PPO
|
88 |
+
env_id = env_id, # Name of the environment
|
89 |
+
eval_env = eval_env, # Evaluation Environment
|
90 |
+
repo_id = args.repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
91 |
+
commit_message = args.commit_message)
|