File size: 1,458 Bytes
6a85075 f6d4d1b 6a85075 f6d4d1b 6a85075 c0e2b23 6a85075 22dfa3a 6a85075 22dfa3a 6a85075 22dfa3a 6a85075 22dfa3a 6a85075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.58 +/- 2.72
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
1. Load model
```python
from urllib.error import HTTPError
from huggingface_hub import hf_hub_download
def load_from_hub(repo_id: str, filename: str) -> str:
"""
Download a model from Hugging Face Hub.
:param repo_id: id of the model repository from the Hugging Face Hub
:param filename: name of the model zip file from the repository
"""
# Get the model from the Hub, download and cache the model on your local disk
pickle_model = hf_hub_download(
repo_id=repo_id,
filename=filename
)
with open(pickle_model, 'rb') as f:
downloaded_model_file = pickle.load(f)
return downloaded_model_file
```
2. Evaluate model
```
model = load_from_hub(repo_id="thien1892/q-taxi-v3", filename="q-learning.pkl") # Try to use another model
print(model)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|