[paths] train = "train.spacy" dev = "dev.spacy" vectors = "./vectors" init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "fr" pipeline = ["presque_normalizer","tokentype","morphologizer","viceverser_lemmatizer","sentencizer","parser"] batch_size = 1000 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null vectors = {"@vectors":"spacy.Vectors.v1"} tokenizer = {"@tokenizers":"quelquhui_tokenizer"} [components] [components.morphologizer] factory = "morphologizer" extend = false label_smoothing = 0.05 overwrite = true scorer = {"@scorers":"spacy.morphologizer_scorer.v1"} [components.morphologizer.model] @architectures = "spacy.Tagger.v2" nO = null normalize = false [components.morphologizer.model.tok2vec] @architectures = "spacy.Tok2Vec.v2" [components.morphologizer.model.tok2vec.embed] @architectures = "spacy.MultiHashEmbed.v2" width = ${components.morphologizer.model.tok2vec.encode.width} attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,1000,2500,2500] include_static_vectors = true [components.morphologizer.model.tok2vec.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 256 depth = 8 window_size = 1 maxout_pieces = 3 [components.parser] factory = "parser" learn_tokens = false min_action_freq = 30 moves = null scorer = {"@scorers":"spacy.parser_scorer.v1"} update_with_oracle_cut_size = 100 [components.parser.model] @architectures = "spacy.TransitionBasedParser.v2" state_type = "parser" extra_state_tokens = false hidden_width = 128 maxout_pieces = 3 use_upper = true nO = null [components.parser.model.tok2vec] @architectures = "spacy.HashEmbedCNN.v2" pretrained_vectors = null width = 96 depth = 4 embed_size = 2000 window_size = 1 maxout_pieces = 3 subword_features = false [components.presque_normalizer] factory = "presque_normalizer" fn_agg_suff = null suff_sep_char = "\u00b7" use_default_word_list = true words_files = [] [components.presque_normalizer.exc] [components.sentencizer] factory = "sentencizer" overwrite = false punct_chars = ["\n","!","?",":",".","..."] scorer = {"@scorers":"spacy.senter_scorer.v1"} [components.tokentype] factory = "tokentype" extname = "tokentype" [components.viceverser_lemmatizer] factory = "viceverser_lemmatizer" [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 10 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] pos_acc = 0.25 morph_acc = 0.25 morph_per_feat = null sents_f = 0.0 sents_p = null sents_r = null dep_uas = 0.25 dep_las = 0.25 dep_las_per_type = null [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null after_init = null before_init = {"@callbacks":"space_tokenizer"} [initialize.components] [initialize.tokenizer]