--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - thomas0104/nan_tw_soap_opera metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: thomas0104/nan_tw_soap_opera nan-tw type: thomas0104/nan_tw_soap_opera config: nan-tw split: test metrics: - name: Wer type: wer value: 343.562937357727 --- # openai/large_v2_nan_tw_so_short_30s This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the thomas0104/nan_tw_soap_opera nan-tw dataset. It achieves the following results on the evaluation set: - Loss: 1.3322 - Wer: 343.5629 - Cer: 416.4573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 1.1133 | 1.0 | 1000 | 1.3322 | 343.5629 | 416.4573 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2