File size: 1,966 Bytes
33da1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e4990
33da1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e4990
33da1c6
 
 
 
 
31deee2
 
 
 
 
 
 
a4e4990
 
 
 
33da1c6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: sparse_mistral_7b_refined_web_50p_2024-05-11
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sparse_mistral_7b_refined_web_50p_2024-05-11

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2258

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 275

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3307        | 0.0   | 25   | 2.4048          |
| 2.2364        | 0.0   | 50   | 2.3533          |
| 2.2723        | 0.01  | 75   | 2.3099          |
| 2.1585        | 0.01  | 100  | 2.2884          |
| 2.2562        | 0.01  | 125  | 2.2787          |
| 2.4057        | 0.01  | 150  | 2.2709          |
| 2.3147        | 0.01  | 175  | 2.2635          |
| 2.2796        | 0.02  | 200  | 2.2600          |
| 2.2157        | 0.02  | 225  | 2.2557          |
| 2.303         | 0.02  | 250  | 2.2542          |
| 2.0701        | 0.02  | 275  | 2.2511          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2