--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_sst2_dense_epochs-3 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9575688073394495 --- # t5-large_sst2_dense_epochs-3 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2376 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 0 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2133 | 0.38 | 50 | 0.2188 | 0.9415 | | 0.1655 | 0.76 | 100 | 0.3689 | 0.9518 | | 0.1473 | 1.14 | 150 | 0.2660 | 0.9541 | | 0.1092 | 1.52 | 200 | 0.2441 | 0.9576 | | 0.1081 | 1.89 | 250 | 0.2395 | 0.9599 | | 0.0785 | 2.27 | 300 | 0.3700 | 0.9599 | | 0.119 | 2.65 | 350 | 0.3577 | 0.9530 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1