chujiezheng
commited on
Commit
·
418f4fe
1
Parent(s):
073acfa
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) fine-tuned on the [COLDataset](https://github.com/thu-coai/COLDataset). Usage example:
|
2 |
+
|
3 |
+
```python
|
4 |
+
import torch
|
5 |
+
from transformers.models.bert import BertTokenizer, BertForSequenceClassification
|
6 |
+
|
7 |
+
tokenizer = BertTokenizer.from_pretrained('thu-coai/roberta-base-cold')
|
8 |
+
model = BertForSequenceClassification.from_pretrained('thu-coai/roberta-base-cold')
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
texts = ['你就是个傻逼!','黑人很多都好吃懒做,偷奸耍滑!','男女平等,黑人也很优秀。']
|
12 |
+
|
13 |
+
model_input = tokenizer(texts,return_tensors="pt",padding=True)
|
14 |
+
model_output = model(**model_input, return_dict=False)
|
15 |
+
prediction = torch.argmax(model_output[0].cpu(), dim=-1)
|
16 |
+
prediction = [p.item() for p in prediction]
|
17 |
+
print(prediction) # --> [1, 1, 0] (0 for Non-Offensive, 1 for Offenisve)
|
18 |
+
```
|
19 |
+
|
20 |
+
This fine-tuned model obtains 82.75 accuracy and 82.39 macro-F1 on the test set.
|
21 |
+
|
22 |
+
Please kindly cite the [original paper](https://arxiv.org/abs/2201.06025) if you use this model.
|
23 |
+
|
24 |
+
```
|
25 |
+
@article{deng2022cold,
|
26 |
+
title={Cold: A benchmark for chinese offensive language detection},
|
27 |
+
author={Deng, Jiawen and Zhou, Jingyan and Sun, Hao and Zheng, Chujie and Mi, Fei and Meng, Helen and Huang, Minlie},
|
28 |
+
booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
|
29 |
+
year={2022}
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|