--- license: apache-2.0 tags: - generated_from_trainer datasets: - pokemon-classification metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-pokemon-classification results: - task: name: Image Classification type: image-classification dataset: name: pokemon-classification type: pokemon-classification config: full split: train args: full metrics: - name: Accuracy type: accuracy value: 0.9342915811088296 --- # swinv2-tiny-patch4-window8-256-finetuned-pokemon-classification This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the pokemon-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.2696 - Accuracy: 0.9343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.874 | 0.99 | 34 | 4.5972 | 0.0431 | | 3.6502 | 1.99 | 68 | 2.5463 | 0.4990 | | 1.7664 | 2.98 | 102 | 1.0859 | 0.7762 | | 1.0898 | 4.0 | 137 | 0.6180 | 0.8542 | | 0.8125 | 4.99 | 171 | 0.4411 | 0.9035 | | 0.7437 | 5.99 | 205 | 0.3597 | 0.9076 | | 0.6117 | 6.98 | 239 | 0.3174 | 0.9302 | | 0.5581 | 8.0 | 274 | 0.2878 | 0.9281 | | 0.5178 | 8.99 | 308 | 0.2765 | 0.9302 | | 0.4802 | 9.93 | 340 | 0.2696 | 0.9343 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3