update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: bert-large-uncased-finetuned-vi-infovqa
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# bert-large-uncased-finetuned-vi-infovqa
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 7.4878
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
+
- train_batch_size: 2
|
38 |
+
- eval_batch_size: 2
|
39 |
+
- seed: 250500
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 6
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| No log | 0.11 | 100 | 4.6256 |
|
49 |
+
| No log | 0.21 | 200 | 4.4042 |
|
50 |
+
| No log | 0.32 | 300 | 5.0021 |
|
51 |
+
| No log | 0.43 | 400 | 4.2825 |
|
52 |
+
| 4.6758 | 0.53 | 500 | 4.3886 |
|
53 |
+
| 4.6758 | 0.64 | 600 | 4.2519 |
|
54 |
+
| 4.6758 | 0.75 | 700 | 4.2977 |
|
55 |
+
| 4.6758 | 0.85 | 800 | 3.9916 |
|
56 |
+
| 4.6758 | 0.96 | 900 | 4.1650 |
|
57 |
+
| 4.1715 | 1.07 | 1000 | 4.5001 |
|
58 |
+
| 4.1715 | 1.17 | 1100 | 4.0898 |
|
59 |
+
| 4.1715 | 1.28 | 1200 | 4.1623 |
|
60 |
+
| 4.1715 | 1.39 | 1300 | 4.3271 |
|
61 |
+
| 4.1715 | 1.49 | 1400 | 3.9661 |
|
62 |
+
| 3.7926 | 1.6 | 1500 | 3.8727 |
|
63 |
+
| 3.7926 | 1.71 | 1600 | 3.8934 |
|
64 |
+
| 3.7926 | 1.81 | 1700 | 3.7262 |
|
65 |
+
| 3.7926 | 1.92 | 1800 | 3.7701 |
|
66 |
+
| 3.7926 | 2.03 | 1900 | 3.7653 |
|
67 |
+
| 3.5041 | 2.13 | 2000 | 3.9261 |
|
68 |
+
| 3.5041 | 2.24 | 2100 | 4.0915 |
|
69 |
+
| 3.5041 | 2.35 | 2200 | 4.0348 |
|
70 |
+
| 3.5041 | 2.45 | 2300 | 4.0212 |
|
71 |
+
| 3.5041 | 2.56 | 2400 | 4.4653 |
|
72 |
+
| 2.8475 | 2.67 | 2500 | 4.2959 |
|
73 |
+
| 2.8475 | 2.77 | 2600 | 4.1039 |
|
74 |
+
| 2.8475 | 2.88 | 2700 | 3.8037 |
|
75 |
+
| 2.8475 | 2.99 | 2800 | 3.7552 |
|
76 |
+
| 2.8475 | 3.09 | 2900 | 4.2476 |
|
77 |
+
| 2.5488 | 3.2 | 3000 | 4.6716 |
|
78 |
+
| 2.5488 | 3.3 | 3100 | 4.7058 |
|
79 |
+
| 2.5488 | 3.41 | 3200 | 4.6266 |
|
80 |
+
| 2.5488 | 3.52 | 3300 | 4.5697 |
|
81 |
+
| 2.5488 | 3.62 | 3400 | 5.1017 |
|
82 |
+
| 2.0347 | 3.73 | 3500 | 4.6254 |
|
83 |
+
| 2.0347 | 3.84 | 3600 | 4.4822 |
|
84 |
+
| 2.0347 | 3.94 | 3700 | 4.9413 |
|
85 |
+
| 2.0347 | 4.05 | 3800 | 5.3600 |
|
86 |
+
| 2.0347 | 4.16 | 3900 | 5.7323 |
|
87 |
+
| 1.6566 | 4.26 | 4000 | 5.8822 |
|
88 |
+
| 1.6566 | 4.37 | 4100 | 6.0173 |
|
89 |
+
| 1.6566 | 4.48 | 4200 | 5.6688 |
|
90 |
+
| 1.6566 | 4.58 | 4300 | 6.0617 |
|
91 |
+
| 1.6566 | 4.69 | 4400 | 6.6631 |
|
92 |
+
| 1.3348 | 4.8 | 4500 | 6.0290 |
|
93 |
+
| 1.3348 | 4.9 | 4600 | 6.2455 |
|
94 |
+
| 1.3348 | 5.01 | 4700 | 6.0963 |
|
95 |
+
| 1.3348 | 5.12 | 4800 | 7.0983 |
|
96 |
+
| 1.3348 | 5.22 | 4900 | 7.5483 |
|
97 |
+
| 1.0701 | 5.33 | 5000 | 7.7187 |
|
98 |
+
| 1.0701 | 5.44 | 5100 | 7.4630 |
|
99 |
+
| 1.0701 | 5.54 | 5200 | 7.1394 |
|
100 |
+
| 1.0701 | 5.65 | 5300 | 7.0703 |
|
101 |
+
| 1.0701 | 5.76 | 5400 | 7.5611 |
|
102 |
+
| 0.9414 | 5.86 | 5500 | 7.6038 |
|
103 |
+
| 0.9414 | 5.97 | 5600 | 7.4878 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.15.0
|
109 |
+
- Pytorch 1.10.0+cu111
|
110 |
+
- Datasets 1.17.0
|
111 |
+
- Tokenizers 0.10.3
|