slimfrikha-tii
commited on
Commit
·
d9e6889
1
Parent(s):
e40d742
docs(readme): udpate template
Browse files
README.md
CHANGED
@@ -1,133 +1,62 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
-
- es
|
5 |
-
- pt
|
6 |
tags:
|
7 |
- falcon3
|
8 |
---
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
2. [Usage](#usage)
|
16 |
-
3. [Training Details](#training-details)
|
17 |
-
4. [Evaluation](#evaluation)
|
18 |
-
|
19 |
-
|
20 |
-
# TL;DR
|
21 |
-
|
22 |
-
# Model Details
|
23 |
|
24 |
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
|
25 |
|
26 |
-
## Model
|
27 |
-
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
## Using the Pytorch model with 🤗 transformers
|
41 |
-
|
42 |
-
### Running the model on a CPU
|
43 |
-
|
44 |
-
<details>
|
45 |
-
<summary> Click to expand </summary>
|
46 |
-
|
47 |
-
```python
|
48 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
49 |
-
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
51 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
|
52 |
-
|
53 |
-
input_text = "Question: How many hours in one day? Answer: "
|
54 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
55 |
-
|
56 |
-
outputs = model.generate(input_ids)
|
57 |
-
print(tokenizer.decode(outputs[0]))
|
58 |
-
```
|
59 |
-
|
60 |
-
</details>
|
61 |
-
|
62 |
-
### Running the model on a GPU
|
63 |
|
64 |
-
<details>
|
65 |
-
<summary> Click to expand </summary>
|
66 |
-
|
67 |
-
```python
|
68 |
-
# pip install accelerate
|
69 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
70 |
-
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
|
72 |
-
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
|
73 |
|
74 |
-
|
75 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
76 |
-
|
77 |
-
outputs = model.generate(input_ids)
|
78 |
-
print(tokenizer.decode(outputs[0]))
|
79 |
-
```
|
80 |
-
|
81 |
-
</details>
|
82 |
-
|
83 |
-
### Running the model on a GPU using `torch.compile`
|
84 |
|
85 |
<details>
|
86 |
<summary> Click to expand </summary>
|
87 |
|
88 |
```python
|
89 |
import torch
|
90 |
-
from transformers import
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
outputs = model.generate(input_ids)
|
101 |
-
print(tokenizer.decode(outputs[0]))
|
102 |
```
|
103 |
|
104 |
</details>
|
105 |
|
|
|
106 |
|
107 |
-
#
|
108 |
-
|
109 |
-
## Training Data
|
110 |
-
|
111 |
-
Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.
|
112 |
-
|
113 |
-
## Training Procedure
|
114 |
-
|
115 |
-
Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
116 |
-
|
117 |
-
### Training Hyperparameters
|
118 |
|
119 |
-
| **Hyperparameter** | **Value** | **Comment** |
|
120 |
-
|--------------------|------------|---------------------------------------|
|
121 |
-
| Precision | `bfloat16` | |
|
122 |
-
| Optimizer | AdamW | |
|
123 |
-
| Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) |
|
124 |
-
| | | learning rate scheduler |
|
125 |
-
| Weight decay | 1e-1 | |
|
126 |
-
| z-loss | 1e-4 | |
|
127 |
-
| Batch size | Variable | Batch size was gradually increased |
|
128 |
-
| | | during the training |
|
129 |
|
130 |
-
# Evaluation
|
131 |
|
132 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
133 |
<colgroup>
|
@@ -136,6 +65,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
136 |
<col style="width: 7%;">
|
137 |
<col style="width: 7%;">
|
138 |
<col style="width: 7%;">
|
|
|
139 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
140 |
</colgroup>
|
141 |
<thead>
|
@@ -145,6 +75,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
145 |
<th>Llama3.1-8B</th>
|
146 |
<th>Qwen2-7B</th>
|
147 |
<th>Qwen2.5-7B</th>
|
|
|
148 |
<th>Falcon3-7B-Base</th>
|
149 |
</tr>
|
150 |
</thead>
|
@@ -155,6 +86,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
155 |
<td>65.2</td>
|
156 |
<td>70.4</td>
|
157 |
<td>74.2</td>
|
|
|
158 |
<td>67.5</td>
|
159 |
</tr>
|
160 |
<tr>
|
@@ -162,6 +94,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
162 |
<td>32.7</td>
|
163 |
<td>42.1</td>
|
164 |
<td>43.5</td>
|
|
|
165 |
<td>39.2</td>
|
166 |
</tr>
|
167 |
<tr>
|
@@ -169,6 +102,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
169 |
<td>12.0</td>
|
170 |
<td>30.6</td>
|
171 |
<td>33.9</td>
|
|
|
172 |
<td>34.3</td>
|
173 |
</tr>
|
174 |
<tr>
|
@@ -177,6 +111,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
177 |
<td>49.4</td>
|
178 |
<td>77.9</td>
|
179 |
<td>82.9</td>
|
|
|
180 |
<td>76.2</td>
|
181 |
</tr>
|
182 |
<tr>
|
@@ -184,6 +119,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
184 |
<td>4.1</td>
|
185 |
<td>17.5</td>
|
186 |
<td>15.5</td>
|
|
|
187 |
<td>18.0</td>
|
188 |
</tr>
|
189 |
<tr>
|
@@ -192,6 +128,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
192 |
<td>53.4</td>
|
193 |
<td>57.4</td>
|
194 |
<td>59.0</td>
|
|
|
195 |
<td>59.6</td>
|
196 |
</tr>
|
197 |
<tr>
|
@@ -199,6 +136,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
199 |
<td>31.0</td>
|
200 |
<td>31.9</td>
|
201 |
<td>33.0</td>
|
|
|
202 |
<td>35.5</td>
|
203 |
</tr>
|
204 |
<tr>
|
@@ -206,6 +144,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
206 |
<td>38.0</td>
|
207 |
<td>44.1</td>
|
208 |
<td>44.2</td>
|
|
|
209 |
<td>47.3</td>
|
210 |
</tr>
|
211 |
<tr>
|
@@ -213,6 +152,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
213 |
<td>46.5</td>
|
214 |
<td>53.3</td>
|
215 |
<td>54.0</td>
|
|
|
216 |
<td>51.0</td>
|
217 |
</tr>
|
218 |
<tr>
|
@@ -221,6 +161,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
221 |
<td>80.3</td>
|
222 |
<td>79.8</td>
|
223 |
<td>78.7</td>
|
|
|
224 |
<td>77.7</td>
|
225 |
</tr>
|
226 |
<tr>
|
@@ -228,6 +169,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
228 |
<td>96.3</td>
|
229 |
<td>95.9</td>
|
230 |
<td>96.6</td>
|
|
|
231 |
<td>95.3</td>
|
232 |
</tr>
|
233 |
<tr>
|
@@ -235,6 +177,7 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
235 |
<td>74.0</td>
|
236 |
<td>72.1</td>
|
237 |
<td>72.9</td>
|
|
|
238 |
<td>71.0</td>
|
239 |
</tr>
|
240 |
<tr>
|
@@ -242,11 +185,21 @@ Falcon3-7B is trained on 256 H100 nodes (world size 2048).
|
|
242 |
<td>33.4</td>
|
243 |
<td>35.2</td>
|
244 |
<td>33.6</td>
|
|
|
245 |
<td>31.4</td>
|
246 |
</tr>
|
247 |
</tbody>
|
248 |
</table>
|
249 |
|
250 |
|
|
|
|
|
251 |
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
|
|
4 |
tags:
|
5 |
- falcon3
|
6 |
---
|
7 |
|
8 |
+
# Falcon3-7B-Base
|
9 |
|
10 |
+
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
11 |
|
12 |
+
This repository contains the **Falcon3-7B-Base**. It achieves state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
|
13 |
+
Falcon3-7B-Base supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
|
16 |
|
17 |
+
## Model Details
|
18 |
+
- Architecture
|
19 |
+
- transformer based causal decoder only architecture
|
20 |
+
- 28 decoder blocks
|
21 |
+
- grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
|
22 |
+
- wider head dimension: 256
|
23 |
+
- high RoPE value to support long context understanding: 1000042
|
24 |
+
- 32k context length
|
25 |
+
- 131k vocab size
|
26 |
+
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
|
27 |
+
- Supports EN, FR, ES, PT
|
28 |
+
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
29 |
+
- License: TII Falcon-LLM License 2.0
|
30 |
+
- Model Release Date: December 2024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
## Getting started
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
<details>
|
36 |
<summary> Click to expand </summary>
|
37 |
|
38 |
```python
|
39 |
import torch
|
40 |
+
from transformers import pipeline
|
41 |
+
|
42 |
+
pipe = pipeline(
|
43 |
+
"text-generation",
|
44 |
+
model="tiiuae/Falcon3-7B-Base",
|
45 |
+
torch_dtype=torch.bfloat16,
|
46 |
+
device_map="auto"
|
47 |
+
)
|
48 |
+
response = pipe("Question: How many hours in one day? Answer: ")
|
49 |
+
print(response[0]['generated_text'])
|
|
|
|
|
50 |
```
|
51 |
|
52 |
</details>
|
53 |
|
54 |
+
<br>
|
55 |
|
56 |
+
# Benchmarks
|
57 |
+
We report in the following table our internal pipeline benchmarks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
60 |
|
61 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
62 |
<colgroup>
|
|
|
65 |
<col style="width: 7%;">
|
66 |
<col style="width: 7%;">
|
67 |
<col style="width: 7%;">
|
68 |
+
<col style="width: 7%;">
|
69 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
70 |
</colgroup>
|
71 |
<thead>
|
|
|
75 |
<th>Llama3.1-8B</th>
|
76 |
<th>Qwen2-7B</th>
|
77 |
<th>Qwen2.5-7B</th>
|
78 |
+
<th>gemma-2-9b</th>
|
79 |
<th>Falcon3-7B-Base</th>
|
80 |
</tr>
|
81 |
</thead>
|
|
|
86 |
<td>65.2</td>
|
87 |
<td>70.4</td>
|
88 |
<td>74.2</td>
|
89 |
+
<td>-</td>
|
90 |
<td>67.5</td>
|
91 |
</tr>
|
92 |
<tr>
|
|
|
94 |
<td>32.7</td>
|
95 |
<td>42.1</td>
|
96 |
<td>43.5</td>
|
97 |
+
<td>-</td>
|
98 |
<td>39.2</td>
|
99 |
</tr>
|
100 |
<tr>
|
|
|
102 |
<td>12.0</td>
|
103 |
<td>30.6</td>
|
104 |
<td>33.9</td>
|
105 |
+
<td>-</td>
|
106 |
<td>34.3</td>
|
107 |
</tr>
|
108 |
<tr>
|
|
|
111 |
<td>49.4</td>
|
112 |
<td>77.9</td>
|
113 |
<td>82.9</td>
|
114 |
+
<td>-</td>
|
115 |
<td>76.2</td>
|
116 |
</tr>
|
117 |
<tr>
|
|
|
119 |
<td>4.1</td>
|
120 |
<td>17.5</td>
|
121 |
<td>15.5</td>
|
122 |
+
<td>-</td>
|
123 |
<td>18.0</td>
|
124 |
</tr>
|
125 |
<tr>
|
|
|
128 |
<td>53.4</td>
|
129 |
<td>57.4</td>
|
130 |
<td>59.0</td>
|
131 |
+
<td>-</td>
|
132 |
<td>59.6</td>
|
133 |
</tr>
|
134 |
<tr>
|
|
|
136 |
<td>31.0</td>
|
137 |
<td>31.9</td>
|
138 |
<td>33.0</td>
|
139 |
+
<td>-</td>
|
140 |
<td>35.5</td>
|
141 |
</tr>
|
142 |
<tr>
|
|
|
144 |
<td>38.0</td>
|
145 |
<td>44.1</td>
|
146 |
<td>44.2</td>
|
147 |
+
<td>-</td>
|
148 |
<td>47.3</td>
|
149 |
</tr>
|
150 |
<tr>
|
|
|
152 |
<td>46.5</td>
|
153 |
<td>53.3</td>
|
154 |
<td>54.0</td>
|
155 |
+
<td>-</td>
|
156 |
<td>51.0</td>
|
157 |
</tr>
|
158 |
<tr>
|
|
|
161 |
<td>80.3</td>
|
162 |
<td>79.8</td>
|
163 |
<td>78.7</td>
|
164 |
+
<td>-</td>
|
165 |
<td>77.7</td>
|
166 |
</tr>
|
167 |
<tr>
|
|
|
169 |
<td>96.3</td>
|
170 |
<td>95.9</td>
|
171 |
<td>96.6</td>
|
172 |
+
<td>-</td>
|
173 |
<td>95.3</td>
|
174 |
</tr>
|
175 |
<tr>
|
|
|
177 |
<td>74.0</td>
|
178 |
<td>72.1</td>
|
179 |
<td>72.9</td>
|
180 |
+
<td>-</td>
|
181 |
<td>71.0</td>
|
182 |
</tr>
|
183 |
<tr>
|
|
|
185 |
<td>33.4</td>
|
186 |
<td>35.2</td>
|
187 |
<td>33.6</td>
|
188 |
+
<td>-</td>
|
189 |
<td>31.4</td>
|
190 |
</tr>
|
191 |
</tbody>
|
192 |
</table>
|
193 |
|
194 |
|
195 |
+
# Citation
|
196 |
+
If Falcon3 family were helpful to your work, feel free to give us a cite.
|
197 |
|
198 |
+
```
|
199 |
+
@misc{Falcon3,
|
200 |
+
title = {Falcon 3 family of Open Foundation Models},
|
201 |
+
author = {TII Team},
|
202 |
+
month = {December},
|
203 |
+
year = {2024}
|
204 |
+
}
|
205 |
+
```
|