slimfrikha-tii
commited on
Commit
·
15015d2
1
Parent(s):
e37f587
docs(readme): benchs
Browse files
README.md
CHANGED
@@ -23,6 +23,7 @@ Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese)
|
|
23 |
- Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
|
24 |
- Wider head dimension: 256
|
25 |
- High RoPE value to support long context understanding: 1000042
|
|
|
26 |
- 32k context length
|
27 |
- 131k vocab size
|
28 |
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
|
@@ -49,7 +50,7 @@ model_name = "tiiuae/Falcon3-7B-Instruct"
|
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
model_name,
|
51 |
torch_dtype="auto",
|
52 |
-
device_map="auto"
|
53 |
)
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
|
@@ -90,8 +91,6 @@ We report in the following table our internal pipeline benchmarks:
|
|
90 |
<col style="width: 10%;">
|
91 |
<col style="width: 7%;">
|
92 |
<col style="width: 7%;">
|
93 |
-
<col style="width: 7%;">
|
94 |
-
<col style="width: 7%;">
|
95 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
96 |
</colgroup>
|
97 |
<thead>
|
@@ -99,9 +98,7 @@ We report in the following table our internal pipeline benchmarks:
|
|
99 |
<th>Category</th>
|
100 |
<th>Benchmark</th>
|
101 |
<th>Llama-3.1-8B-Instruct</th>
|
102 |
-
<th>Qwen2-7B-Instruct</th>
|
103 |
<th>Qwen2.5-7B-Instruct</th>
|
104 |
-
<th>gemma-2-9b-it</th>
|
105 |
<th>Falcon3-7B-Instruct</th>
|
106 |
</tr>
|
107 |
</thead>
|
@@ -109,110 +106,115 @@ We report in the following table our internal pipeline benchmarks:
|
|
109 |
<tr>
|
110 |
<td rowspan="3">General</td>
|
111 |
<td>MMLU (5-shot)</td>
|
112 |
-
<td
|
113 |
-
<td
|
114 |
-
<td
|
115 |
-
<td>-</td>
|
116 |
-
<td>-</td>
|
117 |
</tr>
|
118 |
<tr>
|
119 |
<td>MMLU-PRO (5-shot)</td>
|
120 |
-
<td
|
121 |
-
<td
|
122 |
-
<td
|
123 |
-
<td>-</td>
|
124 |
-
<td>-</td>
|
125 |
</tr>
|
126 |
<tr>
|
127 |
<td>IFEval</td>
|
128 |
-
<td
|
129 |
-
<td
|
130 |
-
<td
|
131 |
-
<td>-</td>
|
132 |
-
<td>-</td>
|
133 |
</tr>
|
134 |
<tr>
|
135 |
-
<td rowspan="
|
136 |
<td>GSM8K (5-shot)</td>
|
137 |
-
<td
|
138 |
-
<td
|
139 |
-
<td
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
142 |
</tr>
|
143 |
<tr>
|
144 |
<td>MATH(4-shot)</td>
|
145 |
-
<td
|
146 |
-
<td
|
147 |
-
<td
|
148 |
-
<td>-</td>
|
149 |
-
<td>-</td>
|
150 |
</tr>
|
151 |
<tr>
|
152 |
-
<td rowspan="
|
153 |
<td>Arc Challenge (25-shot)</td>
|
154 |
-
<td
|
155 |
-
<td
|
156 |
-
<td
|
157 |
-
<td>-</td>
|
158 |
-
<td>-</td>
|
159 |
</tr>
|
160 |
<tr>
|
161 |
<td>GPQA (0-shot)</td>
|
162 |
-
<td
|
163 |
-
<td
|
164 |
-
<td
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
</tr>
|
168 |
<tr>
|
169 |
<td>MUSR (0-shot)</td>
|
170 |
-
<td
|
171 |
-
<td
|
172 |
-
<td
|
173 |
-
<td>-</td>
|
174 |
-
<td>-</td>
|
175 |
</tr>
|
176 |
<tr>
|
177 |
<td>BBH (3-shot)</td>
|
178 |
-
<td
|
179 |
-
<td
|
180 |
-
<td
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
183 |
</tr>
|
184 |
<tr>
|
185 |
<td rowspan="4">CommonSense Understanding</td>
|
186 |
<td>PIQA (0-shot)</td>
|
187 |
-
<td
|
188 |
-
<td
|
189 |
-
<td
|
190 |
-
<td>-</td>
|
191 |
-
<td>-</td>
|
192 |
</tr>
|
193 |
<tr>
|
194 |
<td>SciQ (0-shot)</td>
|
195 |
-
<td
|
196 |
-
<td
|
197 |
-
<td
|
198 |
-
<td>-</td>
|
199 |
-
<td>-</td>
|
200 |
</tr>
|
201 |
<tr>
|
202 |
<td>Winogrande (0-shot)</td>
|
203 |
-
<td
|
204 |
-
<td
|
205 |
-
<td
|
206 |
-
<td>-</td>
|
207 |
-
<td>-</td>
|
208 |
</tr>
|
209 |
<tr>
|
210 |
<td>OpenbookQA (0-shot)</td>
|
211 |
-
<td
|
212 |
-
<td
|
213 |
-
<td
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
</tr>
|
217 |
</tbody>
|
218 |
</table>
|
|
|
23 |
- Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
|
24 |
- Wider head dimension: 256
|
25 |
- High RoPE value to support long context understanding: 1000042
|
26 |
+
- Uses SwiGLU and RMSNorm
|
27 |
- 32k context length
|
28 |
- 131k vocab size
|
29 |
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
|
|
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
model_name,
|
52 |
torch_dtype="auto",
|
53 |
+
device_map="auto"]
|
54 |
)
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
|
|
|
91 |
<col style="width: 10%;">
|
92 |
<col style="width: 7%;">
|
93 |
<col style="width: 7%;">
|
|
|
|
|
94 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
95 |
</colgroup>
|
96 |
<thead>
|
|
|
98 |
<th>Category</th>
|
99 |
<th>Benchmark</th>
|
100 |
<th>Llama-3.1-8B-Instruct</th>
|
|
|
101 |
<th>Qwen2.5-7B-Instruct</th>
|
|
|
102 |
<th>Falcon3-7B-Instruct</th>
|
103 |
</tr>
|
104 |
</thead>
|
|
|
106 |
<tr>
|
107 |
<td rowspan="3">General</td>
|
108 |
<td>MMLU (5-shot)</td>
|
109 |
+
<td>55.9</td>
|
110 |
+
<td><b>72.4</b></td>
|
111 |
+
<td>68</td>
|
|
|
|
|
112 |
</tr>
|
113 |
<tr>
|
114 |
<td>MMLU-PRO (5-shot)</td>
|
115 |
+
<td>21.8</td>
|
116 |
+
<td>35.8</td>
|
117 |
+
<td><b>40.7</b></td>
|
|
|
|
|
118 |
</tr>
|
119 |
<tr>
|
120 |
<td>IFEval</td>
|
121 |
+
<td><b>78.8</b></td>
|
122 |
+
<td>74.7</td>
|
123 |
+
<td>76.5</td>
|
|
|
|
|
124 |
</tr>
|
125 |
<tr>
|
126 |
+
<td rowspan="3">Math</td>
|
127 |
<td>GSM8K (5-shot)</td>
|
128 |
+
<td>19.2</td>
|
129 |
+
<td>33.7</td>
|
130 |
+
<td><b>78.8</b></td>
|
131 |
+
</tr>
|
132 |
+
<tr>
|
133 |
+
<td>GSM8k (8-shot, COT)</td>
|
134 |
+
<td>79.8</td>
|
135 |
+
<td>72.7</td>
|
136 |
+
<td><b>80.9</b></td>
|
137 |
</tr>
|
138 |
<tr>
|
139 |
<td>MATH(4-shot)</td>
|
140 |
+
<td>10.4</td>
|
141 |
+
<td>26</td>
|
142 |
+
<td><b>33.1</b></td>
|
|
|
|
|
143 |
</tr>
|
144 |
<tr>
|
145 |
+
<td rowspan="6">Reasoning</td>
|
146 |
<td>Arc Challenge (25-shot)</td>
|
147 |
+
<td>46.6</td>
|
148 |
+
<td>55.7</td>
|
149 |
+
<td><b>65.9</b></td>
|
|
|
|
|
150 |
</tr>
|
151 |
<tr>
|
152 |
<td>GPQA (0-shot)</td>
|
153 |
+
<td><b>33.6</b></td>
|
154 |
+
<td>31.9</td>
|
155 |
+
<td>32</td>
|
156 |
+
</tr>
|
157 |
+
<tr>
|
158 |
+
<td>GPQA (0-shot, COT)</td>
|
159 |
+
<td>9.6</td>
|
160 |
+
<td>13.8</td>
|
161 |
+
<td><b>22.3</b></td>
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td>MUSR (0-shot)</td>
|
165 |
+
<td>38.6</td>
|
166 |
+
<td>40.7</td>
|
167 |
+
<td><b>46.4</b></td>
|
|
|
|
|
168 |
</tr>
|
169 |
<tr>
|
170 |
<td>BBH (3-shot)</td>
|
171 |
+
<td>43.7</td>
|
172 |
+
<td><b>53.9</b></td>
|
173 |
+
<td>52.4</td>
|
174 |
+
</tr>
|
175 |
+
<tr>
|
176 |
+
<td>BBH (3-shot, COT)</td>
|
177 |
+
<td>6.7</td>
|
178 |
+
<td>21.2</td>
|
179 |
+
<td><b>69.3</b></td>
|
180 |
</tr>
|
181 |
<tr>
|
182 |
<td rowspan="4">CommonSense Understanding</td>
|
183 |
<td>PIQA (0-shot)</td>
|
184 |
+
<td><b>78.9</b></td>
|
185 |
+
<td>73.7</td>
|
186 |
+
<td>78.8</td>
|
|
|
|
|
187 |
</tr>
|
188 |
<tr>
|
189 |
<td>SciQ (0-shot)</td>
|
190 |
+
<td>80.2</td>
|
191 |
+
<td>50.9</td>
|
192 |
+
<td><b>94.7</b></td>
|
|
|
|
|
193 |
</tr>
|
194 |
<tr>
|
195 |
<td>Winogrande (0-shot)</td>
|
196 |
+
<td>TODO</td>
|
197 |
+
<td>TODO</td>
|
198 |
+
<td>70.4</td>
|
|
|
|
|
199 |
</tr>
|
200 |
<tr>
|
201 |
<td>OpenbookQA (0-shot)</td>
|
202 |
+
<td><b>46.2</b></td>
|
203 |
+
<td>42.4</td>
|
204 |
+
<td>45.8</td>
|
205 |
+
</tr>
|
206 |
+
<tr>
|
207 |
+
<td rowspan="2">Instructions following</td>
|
208 |
+
<td>MT-Bench (avg)</td>
|
209 |
+
<td>7.86</td>
|
210 |
+
<td><b>8.54</b></td>
|
211 |
+
<td>8.36</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>Alapaca (WC)</td>
|
215 |
+
<td>26.57</td>
|
216 |
+
<td><b>31.5</b></td>
|
217 |
+
<td>26.13</td>
|
218 |
</tr>
|
219 |
</tbody>
|
220 |
</table>
|