|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Falcon model.""" |
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss |
|
from torch.nn import functional as F |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_falcon import FalconConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"tiiuae/falcon-40b", |
|
"tiiuae/falcon-40b-instruct", |
|
"tiiuae/falcon-7b", |
|
"tiiuae/falcon-7b-instruct", |
|
"tiiuae/falcon-rw-7b", |
|
"tiiuae/falcon-rw-1b", |
|
] |
|
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b" |
|
_CONFIG_FOR_DOC = "FalconConfig" |
|
|
|
|
|
|
|
|
|
class FalconLinear(nn.Linear): |
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
hidden_states = input @ self.weight.T |
|
if self.bias is None: |
|
return hidden_states |
|
return hidden_states + self.bias |
|
|
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
class FalconRotaryEmbedding(nn.Module): |
|
"""Implementation of RotaryEmbedding from GPT-NeoX. |
|
This implementation is designed to operate on queries and keys that are compatible with `[batch_size, |
|
n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format). |
|
""" |
|
|
|
def __init__(self, head_dim: int, base=10000): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.head_dim = head_dim |
|
self.seq_len_cached = -1 |
|
self.cos_cached: torch.Tensor | None = None |
|
self.sin_cached: torch.Tensor | None = None |
|
|
|
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor: |
|
total_length = seq_len + past_key_values_length |
|
if total_length > self.seq_len_cached: |
|
self.seq_len_cached = total_length |
|
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(device) |
|
|
|
if dtype in [torch.float16, torch.bfloat16]: |
|
emb = emb.float() |
|
|
|
self.cos_cached = emb.cos()[None, :, :] |
|
self.sin_cached = emb.sin()[None, :, :] |
|
|
|
self.cos_cached = self.cos_cached.type(dtype) |
|
self.sin_cached = self.sin_cached.type(dtype) |
|
|
|
return ( |
|
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length], |
|
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length], |
|
) |
|
|
|
def forward(self, query, key, past_key_values_length=0): |
|
batch, seq_len, head_dim = query.shape |
|
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype) |
|
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
""" |
|
Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it |
|
just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1, |
|
target_length, target_length+past_key_values_length]`. |
|
""" |
|
batch_size, target_length = input_ids_shape |
|
|
|
mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1) |
|
|
|
|
|
|
|
past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device) |
|
mask = torch.cat([past_mask, mask], dim=-1) |
|
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) |
|
return expanded_mask |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor: |
|
""" |
|
Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`. |
|
""" |
|
batch_size, total_length = mask.shape |
|
seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, seq_length, total_length) |
|
|
|
|
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: |
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None].bfloat16() * arange_tensor |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
|
|
|
|
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: |
|
""" |
|
Dropout add function |
|
|
|
Args: |
|
x (`torch.tensor`, *required*): |
|
input tensor |
|
residual (`torch.tensor`, *required*): |
|
residual tensor |
|
prob (`float`, *required*): |
|
dropout probability |
|
training (`bool`, *required*): |
|
training mode |
|
""" |
|
out = F.dropout(x, p=prob, training=training) |
|
out = residual + out |
|
return out |
|
|
|
|
|
class FalconAttention(nn.Module): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.split_size = self.hidden_size |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k) |
|
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) |
|
self.beta = self.inv_norm_factor |
|
if config.new_decoder_architecture: |
|
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim |
|
elif config.multi_query: |
|
qkv_out_dim = self.hidden_size + 2 * self.head_dim |
|
else: |
|
qkv_out_dim = 3 * self.hidden_size |
|
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias) |
|
self.new_decoder_architecture = config.new_decoder_architecture |
|
self.multi_query = config.multi_query |
|
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias) |
|
self.attention_dropout = nn.Dropout(config.attention_dropout) |
|
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1 |
|
|
|
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv` |
|
|
|
Args: |
|
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] |
|
|
|
Returns: |
|
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] |
|
value: [batch_size, seq_length, num_heads, head_dim] |
|
""" |
|
if self.new_decoder_architecture: |
|
batch, seq_len, _ = fused_qkv.shape |
|
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) |
|
query = qkv[:, :, :, :-2] |
|
key = qkv[:, :, :, [-2]] |
|
value = qkv[:, :, :, [-1]] |
|
key = torch.broadcast_to(key, query.shape) |
|
value = torch.broadcast_to(value, query.shape) |
|
|
|
query, key, value = [x.flatten(2, 3) for x in (query, key, value)] |
|
return query, key, value |
|
elif not self.multi_query: |
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape |
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) |
|
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] |
|
else: |
|
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape |
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) |
|
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] |
|
|
|
|
|
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Merge heads together over the last dimenstion |
|
|
|
Args: |
|
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] |
|
|
|
Returns: |
|
torch.tensor: [batch_size, seq_length, num_heads * head_dim] |
|
""" |
|
|
|
|
|
batch_size_and_num_heads, seq_length, _ = x.shape |
|
batch_size = batch_size_and_num_heads // self.num_heads |
|
|
|
|
|
|
|
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3) |
|
|
|
|
|
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: Optional[torch.Tensor], |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
fused_qkv = self.query_key_value(hidden_states) |
|
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads |
|
|
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) |
|
|
|
batch_size, query_length, _, _ = query_layer.shape |
|
|
|
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim) |
|
key_layer = key_layer.transpose(1, 2).reshape( |
|
batch_size * num_kv_heads, |
|
query_length, |
|
self.head_dim, |
|
) |
|
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim) |
|
|
|
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1] |
|
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
|
|
|
|
|
|
key_layer = torch.cat((past_key, key_layer), dim=1) |
|
value_layer = torch.cat((past_value, value_layer), dim=1) |
|
|
|
_, kv_length, _ = key_layer.shape |
|
if use_cache: |
|
present = (key_layer, value_layer) |
|
else: |
|
present = None |
|
|
|
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype) |
|
|
|
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) |
|
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) |
|
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) |
|
|
|
if alibi is None: |
|
if output_attentions: |
|
|
|
|
|
attention_scores = query_layer_ @ key_layer_.transpose(-1, -2) |
|
attention_scores /= math.sqrt(self.head_dim) |
|
|
|
attention_scores = F.softmax( |
|
attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype |
|
) |
|
attn_output = attention_scores @ value_layer_ |
|
else: |
|
attn_output = F.scaled_dot_product_attention( |
|
query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False |
|
) |
|
attention_scores = None |
|
|
|
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) |
|
attn_output = attn_output.permute(0, 2, 1, 3) |
|
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) |
|
|
|
output_tensor = self.dense(attn_output) |
|
|
|
if output_attentions: |
|
return output_tensor, present, attention_scores |
|
else: |
|
return output_tensor, present |
|
|
|
else: |
|
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2) |
|
|
|
|
|
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length) |
|
|
|
|
|
input_dtype = attention_scores.dtype |
|
|
|
if input_dtype == torch.float16 or input_dtype == torch.bfloat16: |
|
attention_scores = attention_scores.to(torch.float32) |
|
|
|
|
|
|
|
|
|
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) |
|
attention_logits *= self.inv_norm_factor |
|
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype) |
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
|
|
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length) |
|
|
|
|
|
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1) |
|
|
|
|
|
context_layer = self._merge_heads(context_layer) |
|
|
|
output_tensor = self.dense(context_layer) |
|
|
|
if output_attentions: |
|
return output_tensor, present, attention_probs |
|
else: |
|
return output_tensor, present |
|
|
|
|
|
class FalconMLP(nn.Module): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias) |
|
self.act = nn.GELU() |
|
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.act(self.dense_h_to_4h(x)) |
|
x = self.dense_4h_to_h(x) |
|
return x |
|
|
|
|
|
class FalconDecoderLayer(nn.Module): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.self_attention = FalconAttention(config) |
|
self.mlp = FalconMLP(config) |
|
self.hidden_dropout = config.hidden_dropout |
|
self.config = config |
|
|
|
if config.new_decoder_architecture: |
|
|
|
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
else: |
|
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
if not config.parallel_attn: |
|
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: Optional[torch.Tensor], |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
residual = hidden_states |
|
|
|
if self.config.new_decoder_architecture: |
|
attention_layernorm_out = self.ln_attn(hidden_states) |
|
mlp_layernorm_out = self.ln_mlp(hidden_states) |
|
else: |
|
attention_layernorm_out = self.input_layernorm(hidden_states) |
|
|
|
|
|
attn_outputs = self.self_attention( |
|
attention_layernorm_out, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
alibi=alibi, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attention_output = attn_outputs[0] |
|
|
|
if not self.config.new_decoder_architecture: |
|
if self.config.parallel_attn: |
|
mlp_layernorm_out = attention_layernorm_out |
|
else: |
|
residual = dropout_add( |
|
attention_output, residual, self.config.attention_dropout, training=self.training |
|
) |
|
mlp_layernorm_out = self.post_attention_layernorm(residual) |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
|
|
mlp_output = self.mlp(mlp_layernorm_out) |
|
|
|
if self.config.new_decoder_architecture or self.config.parallel_attn: |
|
mlp_output += attention_output |
|
|
|
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
FALCON_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`FalconConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
FALCON_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` |
|
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. |
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
|
|
Each element of `past_key_values` is a tuple (past_key, past_value): |
|
- past_key: [batch_size * num_heads, head_dim, kv_length] |
|
- past_value: [batch_size * num_heads, kv_length, head_dim] |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see |
|
`past_key_values`). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class FalconPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = FalconConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["FalconDecoderLayer"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): |
|
if isinstance(module, FalconModel): |
|
module.gradient_checkpointing = value |
|
|
|
@staticmethod |
|
def _convert_cache_to_standard_format( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, |
|
num_heads, ...])) |
|
""" |
|
batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape |
|
|
|
|
|
|
|
num_heads = batch_size_times_num_heads // batch_size |
|
return tuple( |
|
( |
|
layer_past[0].view(batch_size, num_heads, kv_length, head_dim), |
|
layer_past[1].view(batch_size, num_heads, kv_length, head_dim), |
|
) |
|
for layer_past in past_key_value |
|
) |
|
|
|
@staticmethod |
|
def _convert_to_rw_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape |
|
batch_size_times_num_heads = batch_size * num_heads |
|
|
|
return tuple( |
|
( |
|
layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim), |
|
layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim), |
|
) |
|
for layer_past in past_key_value |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.", |
|
FALCON_START_DOCSTRING, |
|
) |
|
class FalconModel(FalconPreTrainedModel): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.use_alibi = config.alibi |
|
|
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) |
|
|
|
|
|
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
|
|
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.word_embeddings |
|
|
|
@staticmethod |
|
def _prepare_attn_mask( |
|
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
|
|
|
|
|
|
|
|
if input_shape[1] + past_key_values_length != attention_mask.shape[1]: |
|
raise ValueError( |
|
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)" |
|
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length" |
|
f" {past_key_values_length}." |
|
) |
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, seq_length = input_shape |
|
|
|
if seq_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, device=device, past_key_values_length=past_key_values_length |
|
) |
|
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.word_embeddings = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
past_key_values = self._convert_to_rw_cache(past_key_values) |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
|
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[1] |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
if self.use_alibi: |
|
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) |
|
else: |
|
alibi = None |
|
|
|
causal_mask = self._prepare_attn_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
alibi=alibi, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if presents is not None: |
|
presents = self._convert_cache_to_standard_format(presents, batch_size) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).", |
|
FALCON_START_DOCSTRING, |
|
) |
|
class FalconForCausalLM(FalconPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: FalconConfig): |
|
super().__init__(config) |
|
self.transformer = FalconModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.Tensor): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> dict: |
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
def _reorder_cache( |
|
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
|
|
|
|
device_to_beam_idx = { |
|
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past |
|
} |
|
reordered_past = tuple( |
|
( |
|
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
) |
|
for layer_past in past |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Falcon Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-1) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
FALCON_START_DOCSTRING, |
|
) |
|
class FalconForSequenceClassification(FalconPreTrainedModel): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = FalconModel(config) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=SequenceClassifierOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
FALCON_START_DOCSTRING, |
|
) |
|
class FalconForTokenClassification(FalconPreTrainedModel): |
|
def __init__(self, config: FalconConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = FalconModel(config) |
|
if getattr(config, "classifier_dropout", None) is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif getattr(config, "hidden_dropout", None) is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
FALCON_START_DOCSTRING, |
|
) |
|
class FalconForQuestionAnswering(FalconPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = FalconModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|