FalconLLM olivierdehaene HF staff commited on
Commit
7f5eb0f
1 Parent(s): a1d11a0

Add hf endpoint handler.py (#24)

Browse files

- Add hf endpoint handler.py (8d5a103212eb614fc3f958ea454e6118fd5f811f)


Co-authored-by: Olivier Dehaene <olivierdehaene@users.noreply.huggingface.co>

Files changed (1) hide show
  1. handler.py +33 -0
handler.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from typing import Any, Dict
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+
6
+
7
+ class EndpointHandler:
8
+ def __init__(self, path=""):
9
+ # load model and tokenizer from path
10
+ self.tokenizer = AutoTokenizer.from_pretrained(path)
11
+ self.model = AutoModelForCausalLM.from_pretrained(
12
+ path, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True
13
+ )
14
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
15
+
16
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
17
+ # process input
18
+ inputs = data.pop("inputs", data)
19
+ parameters = data.pop("parameters", None)
20
+
21
+ # preprocess
22
+ inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
23
+
24
+ # pass inputs with all kwargs in data
25
+ if parameters is not None:
26
+ outputs = self.model.generate(**inputs, **parameters)
27
+ else:
28
+ outputs = self.model.generate(**inputs)
29
+
30
+ # postprocess the prediction
31
+ prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
32
+
33
+ return [{"generated_text": prediction}]