Text Generation
Transformers
Safetensors
English
falcon_mamba
Eval Results
Inference Endpoints
File size: 16,453 Bytes
54ec485
080ad94
acc82ee
 
54ec485
 
 
a2f4009
4a2cff9
 
acc82ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54ec485
f91f64e
a83de80
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f26abf
 
 
 
00003eb
f91f64e
bdad334
f91f64e
2a2ae6e
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
3cd1fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91f64e
 
 
 
 
 
 
 
 
 
 
 
 
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
f1824b9
f91f64e
 
 
 
 
 
f1824b9
f91f64e
00003eb
 
f91f64e
 
 
 
 
 
 
 
 
 
89fee4a
f91f64e
9f26abf
f91f64e
f1824b9
3f34165
ef7ba29
02688fc
 
39afd30
 
 
124f971
 
39afd30
 
f91f64e
 
00003eb
9f26abf
89fee4a
9f26abf
 
 
 
 
d3fe549
9f26abf
d3fe549
9f26abf
f91f64e
18641ad
 
 
9f26abf
89fee4a
9f26abf
 
f91f64e
bdad334
 
f91f64e
 
e3d99da
0e0f166
2b10f59
e3d99da
5bb4402
 
 
 
7f04837
3adb85d
5bb4402
8faf05c
c78f432
5bb4402
8faf05c
5bb4402
d13a3ae
5bb4402
d2cd831
 
2cf50a0
 
 
5bb4402
2b10f59
 
5bb4402
ded105d
5bb4402
 
7f04837
e79efbe
5bb4402
e93d9bf
e79efbe
5bb4402
 
 
e79efbe
5bb4402
b8d360a
d2cd831
2cf50a0
 
 
507600b
e93d9bf
3adb85d
e3d99da
 
 
 
 
 
 
 
4c94e06
f91f64e
9f26abf
bdad334
9f26abf
 
 
 
 
00003eb
9f26abf
 
 
 
 
a29aacd
 
d3fe549
a29aacd
8c8f700
9f26abf
 
 
 
 
00003eb
9f26abf
 
 
61fb990
9f26abf
bdad334
 
9f26abf
 
856badf
09172dd
856badf
 
 
 
 
 
 
 
09172dd
 
 
acc82ee
1e2f267
acc82ee
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
new_version: tiiuae/Falcon3-Mamba-7B-Base
language:
- en
datasets:
- tiiuae/falcon-refinedweb
- HuggingFaceFW/fineweb-edu
license: other
license_name: falcon-mamba-7b-license
license_link: https://falconllm.tii.ae/falcon-mamba-7b-terms-and-conditions.html
model-index:
- name: falcon-mamba-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 33.36
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 19.88
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 3.63
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 8.05
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.86
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 14.47
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/falcon-mamba-7b
      name: Open LLM Leaderboard
---

<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/falcon_mamba/thumbnail.png" alt="drawing" width="800"/>

#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Training Details](#training-details)
4. [Evaluation](#evaluation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Mamba
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon-Mamba License 2.0

<br>

Check out [the blogpost](https://huggingface.co/blog/falconmamba) for more details!

# Usage

Find below some example scripts on how to use the model in `transformers` (Make sure to have the latest transformers, or the one built from source):

## Using the Pytorch model

### Running the model on a CPU

<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto")

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

### Running the model on a GPU using `torch.compile`

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", torch_dtype=torch.bfloat16).to(0)

model = torch.compile(model)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>


### Running the model on a GPU using different precisions

#### FP16

<details>
<summary> Click to expand </summary>

```python
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", torch_dtype=torch.float16)

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

#### 4-bit

<details>
<summary> Click to expand </summary>

```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True))

input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")

outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```

</details>

<br>

# Training Details

## Training Data

Falcon-Mamba has been trained with ~ 5,500 GT mainly coming from [Refined-Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a large volume web-only dataset filtered and deduplicated.
Similar to the others [Falcon](https://huggingface.co/tiiuae/falcon-11B) suite models, Falcon-Mamba has been trained leveraging a multi-stage training strategy to increase the context-length from 2,048 to 8,192. 
Moreover, inspired by the concept of Curriculum Learning, we carefully selected data mixtures throughout the training stages, considering both data diversity and complexity. 
Note that at inference the context-length is not relevant as the Mamba architecture has no limit on long range dependency.
At the last training stage, small portion of high-quality curated data was used to further enhance performance.

Overall, the data sources included RefinedWeb-English, high quality technical data, code data and math data extracted from public sources.
In particular, we used samples coming from [Fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) during our last training stage.

The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7B)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer.

## Training Procedure
Falcon-Mamba-7B was trained on 256 H100 80GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=1, PP=1, DP=256) combined with ZeRO.

### Training Hyperparameters

| **Hyperparameter** | **Value**  | **Comment**                               |
|--------------------|------------|-------------------------------------------|
| Precision          | `bfloat16` |                                           |
| Optimizer          | AdamW      |                                           |
| Max learning rate  | 6.4e-4     | Following a WSD (warmup-stable-decay) learning rate schedule |
| Weight decay       | 1e-1       |                                           |
| Batch size         | 2048       |                                           |


The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from \\(b_{\mathrm{min}}=128\\) to \\(b_{\mathrm{max}}=2048\\) during first 50 GT of training. 
In the stable phase we used maximal learning rate \\(\eta_{\mathrm{max}}=6.4 \times 10^{-4}\\), and decayed it to the minimal value \\(\eta_{\mathrm{min}}=\frac{\eta_{\mathrm{max}}}{256}\\) with exponential schedule over 500 GT. 
Also, we applied *BatchScaling* during the rampup — rescaling learning rate \\(\eta\\) so that the Adam noise temperature \\(T_{\mathrm{noise}}\equiv\frac{\eta}{\sqrt{b}}\\) is kept constant.  

### Speeds, Sizes, Times

The model training took roughly two months. 

<br>

# Evaluation

## Benchmarks

We evaluate our model on all benchmarks of the new leaderboard's version using the `lm-evaluation-harness` package, and then normalize the evaluation results with HuggingFace score normalization.


| `model name`              |`IFEval`| `BBH` |`MATH LvL5`| `GPQA`| `MUSR`|`MMLU-PRO`|`Average`| 
|:--------------------------|:------:|:-----:|:---------:|:-----:|:-----:|:--------:|:-------:|
| ***Pure SSM models***     |        |       |           |       |       |          |         |
| `FalconMamba-7B`          |  33.36 | 19.88 |    3.63   |8.05   |10.86  | 14.47    |**15.04**|
| `TRI-ML/mamba-7b-rw`<sup>*</sup>| 22.46  | 6.71  | 0.45      | 1.12  | 5.51  | 1.69     | 6.25    |
|***Hybrid SSM-attention models***   |       |           |       |       |          |         |
|`recurrentgemma-9b`        | 30.76  | 14.80 | 4.83      | 4.70  | 6.60  | 17.88    |  13.20  |
| `Zyphra/Zamba-7B-v1`<sup>*</sup>      | 24.06  | 21.12 | 3.32      | 3.03  | 7.74  | 16.02    | 12.55   |
|***Transformer models***   |        |       |           |       |       |          |         |
| `Falcon2-11B`             | 32.61  | 21.94 |    2.34   | 2.80  | 7.53  | 15.44    |  13.78  |
| `Meta-Llama-3-8B`         | 14.55  | 24.50 |    3.25   | 7.38  | 6.24  | 24.55    |  13.41  |
| `Meta-Llama-3.1-8B`       | 12.70  | 25.29 |    4.61   | 6.15  | 8.98  | 24.95    |  13.78  |
| `Mistral-7B-v0.1`         | 23.86  | 22.02 |    2.49   | 5.59  | 10.68 | 22.36    |  14.50  |
| `Mistral-Nemo-Base-2407 (12B)`       | 16.83  | 29.37 |    4.98   | 5.82  | 6.52  | 27.46    |  15.08  |
| `gemma-7B`                | 26.59  | 21.12 |    6.42   | 4.92  | 10.98 | 21.64    |**15.28**|
|***RWKV models***          |        |       |           |       |       |          |         |
| `RWKV-v6-Finch-7B`<sup>*</sup>          | 27.65  | 9.04 |    1.11   | 2.81  | 2.25  | 5.85    |  8.12  |
| `RWKV-v6-Finch-14B`<sup>*</sup>         | 29.81  | 12.89 |    1.13   | 5.01  | 3.16  | 11.3    |  10.55  |

Also, we evaluate our model on the benchmarks of the first leaderboard using `lighteval`.


| `model name`                 |`ARC`|`HellaSwag`   |`MMLU` |`Winogrande`|`TruthfulQA`|`GSM8K`|`Average`         | 
|:-----------------------------|:------:|:---------:|:-----:|:----------:|:----------:|:-----:|:----------------:|
| ***Pure SSM models***        |        |           |       |            |            |       |                  |
| `FalconMamba-7B`<sup>*</sup>          | 62.03 |   80.82   | 62.11 |   73.64    |  53.42  | 52.54 |  **64.09**       |
| `TRI-ML/mamba-7b-rw`<sup>*</sup>         | 51.25  | 80.85     | 33.41 | 71.11      | 32.08      | 4.70  | 45.52            |
|***Hybrid SSM-attention models***|     |           |       |            |            |       |                  |
| `recurrentgemma-9b`<sup>**</sup>          |52.00   |   80.40   | 60.50 |   73.60    |   38.60    | 42.60 |  57.95           |
| `Zyphra/Zamba-7B-v1`<sup>*</sup>         | 56.14  | 82.23     | 58.11 | 79.87      | 52.88      | 30.78 |  60.00           |
|***Transformer models***      |        |           |       |            |            |       |                  |
| `Falcon2-11B`                | 59.73  | 82.91     | 58.37 | 78.30      | 52.56      | 53.83 | **64.28**        |
| `Meta-Llama-3-8B`            | 60.24  | 82.23     | 66.70 | 78.45      | 42.93      | 45.19 | 62.62            |
| `Meta-Llama-3.1-8B`            | 58.53  | 82.13     | 66.43 | 74.35      | 44.29      | 47.92 | 62.28            |
| `Mistral-7B-v0.1`            | 59.98  | 83.31     | 64.16 | 78.37      | 42.15      | 37.83 | 60.97            |
| `Mistral-Nemo-Base-2407 (12B)`<sup>*</sup>       | 57.94  | 82.82 |    64.43   | 73.72  | 49.14  | 55.27    |  63.89  |
| `gemma-7B`                   | 61.09  |   82.20   | 64.56 |   79.01    |   44.79    | 50.87 |  63.75           |
|***RWKV models***             |        |       |           |       |       |          |         |
| `RWKV-v6-Finch-7B`<sup>*</sup>          | 43.86  | 75.19 |    41.69   | 68.27  | 42.19  | 19.64    |  48.47  |
| `RWKV-v6-Finch-14B`<sup>*</sup>         | 47.44  | 78.86 |    52.33   | 71.27  | 45.45  | 38.06    |  55.57  |

Mostly, we took evaluation results from both leaderboards. For the models marked by *star* we evaluated the tasks internally, while for the models marked by two *stars* the results were taken from paper or model card.

## Throughput

This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands:

```bash
pip install "causal-conv1d>=1.4.0" mamba-ssm
```

Refer to our [FalconMamba blogpost](https://huggingface.co/blog/falconmamba) for more details about performance evaluation.


<br>

# Technical Specifications 

## Model Architecture and Objective

Falcon-Mamba-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The model is based on the Mamba architecture ([Gu et al., 2023](https://arxiv.org/abs/2312.00752)).

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 64        | Number of layers                       |
| `d_model`          | 4096      | Hidden dimension                       |
| `d_state`          | 16        | The SSM state dimension                |
| Vocabulary         | 65024     | Vocabulary Size                        |
| Sequence length    | 8192      | During the last training stages        |

## Compute Infrastructure

### Hardware

Falcon-Mamba-7B was trained on AWS SageMaker, using on average 256 H100 80GB GPUs in 32 p5 instances. 

### Software

Falcon-Mamba-7B was trained on an internal distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels.

<br>

# Citation

You can use the following bibtex citation: 
```
@misc{zuo2024falconmambacompetitiveattentionfree,
      title={Falcon Mamba: The First Competitive Attention-free 7B Language Model}, 
      author={Jingwei Zuo and Maksim Velikanov and Dhia Eddine Rhaiem and Ilyas Chahed and Younes Belkada and Guillaume Kunsch and Hakim Hacid},
      year={2024},
      eprint={2410.05355},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.05355}, 
}
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/tiiuae__falcon-mamba-7b-details)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |15.04|
|IFEval (0-Shot)    |33.36|
|BBH (3-Shot)       |19.88|
|MATH Lvl 5 (4-Shot)| 3.63|
|GPQA (0-shot)      | 8.05|
|MuSR (0-shot)      |10.86|
|MMLU-PRO (5-shot)  |14.47|