--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - type: accuracy value: 0.9071100917431193 name: Accuracy --- # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2842 - Accuracy: 0.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.02 | 100 | 0.3316 | 0.8624 | | No log | 0.05 | 200 | 0.3357 | 0.8612 | | No log | 0.07 | 300 | 0.3996 | 0.8383 | | No log | 0.1 | 400 | 0.3012 | 0.8716 | | 0.3421 | 0.12 | 500 | 0.3227 | 0.8693 | | 0.3421 | 0.14 | 600 | 0.3643 | 0.8727 | | 0.3421 | 0.17 | 700 | 0.2734 | 0.8853 | | 0.3421 | 0.19 | 800 | 0.3077 | 0.8945 | | 0.3421 | 0.21 | 900 | 0.2709 | 0.9002 | | 0.2705 | 0.24 | 1000 | 0.2737 | 0.8899 | | 0.2705 | 0.26 | 1100 | 0.3079 | 0.8979 | | 0.2705 | 0.29 | 1200 | 0.2713 | 0.8968 | | 0.2705 | 0.31 | 1300 | 0.2505 | 0.8933 | | 0.2705 | 0.33 | 1400 | 0.2932 | 0.8922 | | 0.239 | 0.36 | 1500 | 0.2842 | 0.9071 | | 0.239 | 0.38 | 1600 | 0.2509 | 0.9014 | | 0.239 | 0.4 | 1700 | 0.2819 | 0.8853 | | 0.239 | 0.43 | 1800 | 0.2515 | 0.8956 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2