timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
rwightman HF staff commited on
Commit
3ad15d9
·
1 Parent(s): 2b1896d

Update model config and README

Browse files
Files changed (2) hide show
  1. README.md +113 -2
  2. model.safetensors +3 -0
README.md CHANGED
@@ -2,6 +2,117 @@
2
  tags:
3
  - image-classification
4
  - timm
5
- library_tag: timm
 
 
 
 
 
6
  ---
7
- # Model card for beitv2_large_patch16_224.in1k_ft_in22k_in1k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - image-classification
4
  - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ - imagenet-1k
10
+ - imagenet-22k
11
  ---
12
+ # Model card for beitv2_large_patch16_224.in1k_ft_in22k_in1k
13
+
14
+ A BEiT-v2 image classification model. Trained on ImageNet-1k with self-supervised masked image modelling (MIM) using a VQ-KD encoder as a visual tokenizer (via OpenAI CLIP B/16 teacher). Fine-tuned on ImageNet-22k and then ImageNet-1k.
15
+
16
+
17
+ ## Model Details
18
+ - **Model Type:** Image classification / feature backbone
19
+ - **Model Stats:**
20
+ - Params (M): 304.4
21
+ - GMACs: 61.6
22
+ - Activations (M): 63.5
23
+ - Image size: 224 x 224
24
+ - **Papers:**
25
+ - BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers: https://arxiv.org/abs/2208.06366
26
+ - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
27
+ - **Dataset:** ImageNet-1k
28
+ - **Pretrain Dataset:**
29
+ - ImageNet-1k
30
+ - ImageNet-22k
31
+ - **Original:** https://github.com/microsoft/unilm/tree/master/beit2
32
+
33
+ ## Model Usage
34
+ ### Image Classification
35
+ ```python
36
+ from urllib.request import urlopen
37
+ from PIL import Image
38
+ import timm
39
+
40
+ img = Image.open(urlopen(
41
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
42
+ ))
43
+
44
+ model = timm.create_model('beitv2_large_patch16_224.in1k_ft_in22k_in1k', pretrained=True)
45
+ model = model.eval()
46
+
47
+ # get model specific transforms (normalization, resize)
48
+ data_config = timm.data.resolve_model_data_config(model)
49
+ transforms = timm.data.create_transform(**data_config, is_training=False)
50
+
51
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
52
+
53
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
54
+ ```
55
+
56
+ ### Image Embeddings
57
+ ```python
58
+ from urllib.request import urlopen
59
+ from PIL import Image
60
+ import timm
61
+
62
+ img = Image.open(urlopen(
63
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
64
+ ))
65
+
66
+ model = timm.create_model(
67
+ 'beitv2_large_patch16_224.in1k_ft_in22k_in1k',
68
+ pretrained=True,
69
+ num_classes=0, # remove classifier nn.Linear
70
+ )
71
+ model = model.eval()
72
+
73
+ # get model specific transforms (normalization, resize)
74
+ data_config = timm.data.resolve_model_data_config(model)
75
+ transforms = timm.data.create_transform(**data_config, is_training=False)
76
+
77
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
78
+
79
+ # or equivalently (without needing to set num_classes=0)
80
+
81
+ output = model.forward_features(transforms(img).unsqueeze(0))
82
+ # output is unpooled, a (1, 197, 1024) shaped tensor
83
+
84
+ output = model.forward_head(output, pre_logits=True)
85
+ # output is a (1, num_features) shaped tensor
86
+ ```
87
+
88
+ ## Model Comparison
89
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
90
+
91
+ ## Citation
92
+ ```bibtex
93
+ @article{peng2022beit,
94
+ title={Beit v2: Masked image modeling with vector-quantized visual tokenizers},
95
+ author={Peng, Zhiliang and Dong, Li and Bao, Hangbo and Ye, Qixiang and Wei, Furu},
96
+ journal={arXiv preprint arXiv:2208.06366},
97
+ year={2022}
98
+ }
99
+ ```
100
+ ```bibtex
101
+ @article{dosovitskiy2020vit,
102
+ title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
103
+ author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
104
+ journal={ICLR},
105
+ year={2021}
106
+ }
107
+ ```
108
+ ```bibtex
109
+ @misc{rw2019timm,
110
+ author = {Ross Wightman},
111
+ title = {PyTorch Image Models},
112
+ year = {2019},
113
+ publisher = {GitHub},
114
+ journal = {GitHub repository},
115
+ doi = {10.5281/zenodo.4414861},
116
+ howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
117
+ }
118
+ ```
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08cb79e9ed369cc20d5328d3c05a399d26716ffe3b24d2ba579fc1565da39ebc
3
+ size 1225213402