--- license: apache-2.0 library_name: timm tags: - image-classification - timm - transformers datasets: - imagenet-1k --- # Model card for davit_base.msft_in1k A DaViT image classification model. Trained on ImageNet-1k by paper authors. Thanks to [Fredo Guan](https://github.com/fffffgggg54) for bringing the classification backbone to `timm`. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 88.0 - GMACs: 15.5 - Activations (M): 40.7 - Image size: 224 x 224 - **Papers:** - DaViT: Dual Attention Vision Transformers: https://arxiv.org/abs/2204.03645 - **Original:** https://github.com/dingmyu/davit - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('davit_base.msft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'davit_base.msft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 56, 56]) # torch.Size([1, 192, 28, 28]) # torch.Size([1, 384, 14, 14]) # torch.Size([1, 768, 7, 7] print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'davit_base.msft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison ### By Top-1 |model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct|interpolation| |---------------------|------|--------|------|--------|-----------|--------|--------|-------------| |davit_base.msft_in1k |84.634|15.366 |97.014|2.986 |87.95 |224 |0.95 |bicubic | |davit_small.msft_in1k|84.25 |15.75 |96.94 |3.06 |49.75 |224 |0.95 |bicubic | |davit_tiny.msft_in1k |82.676|17.324 |96.276|3.724 |28.36 |224 |0.95 |bicubic | ## Citation ```bibtex @inproceedings{ding2022davit, title={DaViT: Dual Attention Vision Transformer}, author={Ding, Mingyu and Xiao, Bin and Codella, Noel and Luo, Ping and Wang, Jingdong and Yuan, Lu}, booktitle={ECCV}, year={2022}, } ```