File size: 4,561 Bytes
0271ae7 f6c09ac 0271ae7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
---
# Model card for efficientformerv2_s1.snap_dist_in1k
A EfficientFormer-V2 image classification model. Pretrained with distillation on ImageNet-1k.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 6.2
- GMACs: 0.7
- Activations (M): 7.7
- Image size: 224 x 224
- **Original:** https://github.com/snap-research/EfficientFormer
- **Papers:**
- Rethinking Vision Transformers for MobileNet Size and Speed: https://arxiv.org/abs/2212.08059
- **Dataset:** ImageNet-1k
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('efficientformerv2_s1.snap_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'efficientformerv2_s1.snap_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'efficientformerv2_s1.snap_dist_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g. for efficientformerv2_l:
# torch.Size([2, 40, 56, 56])
# torch.Size([2, 80, 28, 28])
# torch.Size([2, 192, 14, 14])
# torch.Size([2, 384, 7, 7])
print(o.shape)
```
## Model Comparison
|model |top1 |top5 |param_count|img_size|
|-----------------------------------|------|------|-----------|--------|
|efficientformerv2_l.snap_dist_in1k |83.628|96.54 |26.32 |224 |
|efficientformer_l7.snap_dist_in1k |83.368|96.534|82.23 |224 |
|efficientformer_l3.snap_dist_in1k |82.572|96.24 |31.41 |224 |
|efficientformerv2_s2.snap_dist_in1k|82.128|95.902|12.71 |224 |
|efficientformer_l1.snap_dist_in1k |80.496|94.984|12.29 |224 |
|efficientformerv2_s1.snap_dist_in1k|79.698|94.698|6.19 |224 |
|efficientformerv2_s0.snap_dist_in1k|76.026|92.77 |3.6 |224 |
## Citation
```bibtex
@article{li2022rethinking,
title={Rethinking Vision Transformers for MobileNet Size and Speed},
author={Li, Yanyu and Hu, Ju and Wen, Yang and Evangelidis, Georgios and Salahi, Kamyar and Wang, Yanzhi and Tulyakov, Sergey and Ren, Jian},
journal={arXiv preprint arXiv:2212.08059},
year={2022}
}
```
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
|