Update model config and README
Browse files- README.md +3 -6
- config.json +4 -1
README.md
CHANGED
@@ -19,9 +19,9 @@ An EfficientViT (MIT) image classification model. Trained on ImageNet-1k by pape
|
|
19 |
- Activations (M): 9.5
|
20 |
- Image size: 256 x 256
|
21 |
- **Papers:**
|
22 |
-
- EfficientViT:
|
23 |
-
- **Dataset:** ImageNet-1k
|
24 |
- **Original:** https://github.com/mit-han-lab/efficientvit
|
|
|
25 |
|
26 |
## Model Usage
|
27 |
### Image Classification
|
@@ -112,13 +112,10 @@ output = model.forward_head(output, pre_logits=True)
|
|
112 |
# output is a (1, num_features) shaped tensor
|
113 |
```
|
114 |
|
115 |
-
## Model Comparison
|
116 |
-
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
117 |
-
|
118 |
## Citation
|
119 |
```bibtex
|
120 |
@article{cai2022efficientvit,
|
121 |
-
title={
|
122 |
author={Cai, Han and Gan, Chuang and Han, Song},
|
123 |
journal={arXiv preprint arXiv:2205.14756},
|
124 |
year={2022}
|
|
|
19 |
- Activations (M): 9.5
|
20 |
- Image size: 256 x 256
|
21 |
- **Papers:**
|
22 |
+
- EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction: https://arxiv.org/abs/2205.14756
|
|
|
23 |
- **Original:** https://github.com/mit-han-lab/efficientvit
|
24 |
+
- **Dataset:** ImageNet-1k
|
25 |
|
26 |
## Model Usage
|
27 |
### Image Classification
|
|
|
112 |
# output is a (1, num_features) shaped tensor
|
113 |
```
|
114 |
|
|
|
|
|
|
|
115 |
## Citation
|
116 |
```bibtex
|
117 |
@article{cai2022efficientvit,
|
118 |
+
title={EfficientViT: Enhanced linear attention for high-resolution low-computation visual recognition},
|
119 |
author={Cai, Han and Gan, Chuang and Han, Song},
|
120 |
journal={arXiv preprint arXiv:2205.14756},
|
121 |
year={2022}
|
config.json
CHANGED
@@ -26,7 +26,10 @@
|
|
26 |
0.225
|
27 |
],
|
28 |
"num_classes": 1000,
|
29 |
-
"pool_size":
|
|
|
|
|
|
|
30 |
"first_conv": "stem.in_conv.conv",
|
31 |
"classifier": "head.classifier.4"
|
32 |
}
|
|
|
26 |
0.225
|
27 |
],
|
28 |
"num_classes": 1000,
|
29 |
+
"pool_size": [
|
30 |
+
8,
|
31 |
+
8
|
32 |
+
],
|
33 |
"first_conv": "stem.in_conv.conv",
|
34 |
"classifier": "head.classifier.4"
|
35 |
}
|