Add model
Browse files- README.md +146 -0
- config.json +33 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
---
|
10 |
+
# Model card for hiera_tiny_224.mae
|
11 |
+
|
12 |
+
A Hiera image feature model. Pretrained on ImageNet-1k with Self-Supervised Masked Autoencoder (MAE) method by paper authors.
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
- **Model Type:** Image classification / feature backbone
|
18 |
+
- **Model Stats:**
|
19 |
+
- Params (M): 27.1
|
20 |
+
- GMACs: 4.9
|
21 |
+
- Activations (M): 17.1
|
22 |
+
- Image size: 224 x 224
|
23 |
+
- **Dataset:** ImageNet-1k
|
24 |
+
- **Papers:**
|
25 |
+
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: https://arxiv.org/abs/2306.00989
|
26 |
+
- Masked Autoencoders Are Scalable Vision Learners: https://arxiv.org/abs/2111.06377
|
27 |
+
- **Original:** https://github.com/facebookresearch/hiera
|
28 |
+
|
29 |
+
## Model Usage
|
30 |
+
### Image Classification
|
31 |
+
```python
|
32 |
+
from urllib.request import urlopen
|
33 |
+
from PIL import Image
|
34 |
+
import timm
|
35 |
+
|
36 |
+
img = Image.open(urlopen(
|
37 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
38 |
+
))
|
39 |
+
|
40 |
+
model = timm.create_model('hiera_tiny_224.mae', pretrained=True)
|
41 |
+
model = model.eval()
|
42 |
+
|
43 |
+
# get model specific transforms (normalization, resize)
|
44 |
+
data_config = timm.data.resolve_model_data_config(model)
|
45 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
46 |
+
|
47 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
48 |
+
|
49 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
50 |
+
```
|
51 |
+
|
52 |
+
### Feature Map Extraction
|
53 |
+
```python
|
54 |
+
from urllib.request import urlopen
|
55 |
+
from PIL import Image
|
56 |
+
import timm
|
57 |
+
|
58 |
+
img = Image.open(urlopen(
|
59 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
60 |
+
))
|
61 |
+
|
62 |
+
model = timm.create_model(
|
63 |
+
'hiera_tiny_224.mae',
|
64 |
+
pretrained=True,
|
65 |
+
features_only=True,
|
66 |
+
)
|
67 |
+
model = model.eval()
|
68 |
+
|
69 |
+
# get model specific transforms (normalization, resize)
|
70 |
+
data_config = timm.data.resolve_model_data_config(model)
|
71 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
72 |
+
|
73 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
74 |
+
|
75 |
+
for o in output:
|
76 |
+
# print shape of each feature map in output
|
77 |
+
# e.g.:
|
78 |
+
# torch.Size([1, 96, 56, 56])
|
79 |
+
# torch.Size([1, 192, 28, 28])
|
80 |
+
# torch.Size([1, 384, 14, 14])
|
81 |
+
# torch.Size([1, 768, 7, 7])
|
82 |
+
|
83 |
+
print(o.shape)
|
84 |
+
```
|
85 |
+
|
86 |
+
### Image Embeddings
|
87 |
+
```python
|
88 |
+
from urllib.request import urlopen
|
89 |
+
from PIL import Image
|
90 |
+
import timm
|
91 |
+
|
92 |
+
img = Image.open(urlopen(
|
93 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
94 |
+
))
|
95 |
+
|
96 |
+
model = timm.create_model(
|
97 |
+
'hiera_tiny_224.mae',
|
98 |
+
pretrained=True,
|
99 |
+
num_classes=0, # remove classifier nn.Linear
|
100 |
+
)
|
101 |
+
model = model.eval()
|
102 |
+
|
103 |
+
# get model specific transforms (normalization, resize)
|
104 |
+
data_config = timm.data.resolve_model_data_config(model)
|
105 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
106 |
+
|
107 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
108 |
+
|
109 |
+
# or equivalently (without needing to set num_classes=0)
|
110 |
+
|
111 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
112 |
+
# output is unpooled, a (1, 49, 768) shaped tensor
|
113 |
+
|
114 |
+
output = model.forward_head(output, pre_logits=True)
|
115 |
+
# output is a (1, num_features) shaped tensor
|
116 |
+
```
|
117 |
+
|
118 |
+
## Model Comparison
|
119 |
+
### By Top-1
|
120 |
+
|
121 |
+
|model |top1 |top1_err|top5 |top5_err|param_count|
|
122 |
+
|---------------------------------|------|--------|------|--------|-----------|
|
123 |
+
|hiera_huge_224.mae_in1k_ft_in1k |86.834|13.166 |98.01 |1.99 |672.78 |
|
124 |
+
|hiera_large_224.mae_in1k_ft_in1k |86.042|13.958 |97.648|2.352 |213.74 |
|
125 |
+
|hiera_base_plus_224.mae_in1k_ft_in1k|85.134|14.866 |97.158|2.842 |69.9 |
|
126 |
+
|hiera_base_224.mae_in1k_ft_in1k |84.49 |15.51 |97.032|2.968 |51.52 |
|
127 |
+
|hiera_small_224.mae_in1k_ft_in1k |83.884|16.116 |96.684|3.316 |35.01 |
|
128 |
+
|hiera_tiny_224.mae_in1k_ft_in1k |82.786|17.214 |96.204|3.796 |27.91 |
|
129 |
+
|
130 |
+
## Citation
|
131 |
+
```bibtex
|
132 |
+
@article{ryali2023hiera,
|
133 |
+
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
|
134 |
+
author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph},
|
135 |
+
journal={ICML},
|
136 |
+
year={2023}
|
137 |
+
}
|
138 |
+
```
|
139 |
+
```bibtex
|
140 |
+
@Article{MaskedAutoencoders2021,
|
141 |
+
author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{'a}r and Ross Girshick},
|
142 |
+
journal = {arXiv:2111.06377},
|
143 |
+
title = {Masked Autoencoders Are Scalable Vision Learners},
|
144 |
+
year = {2021},
|
145 |
+
}
|
146 |
+
```
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "hiera_tiny_224",
|
3 |
+
"num_classes": 0,
|
4 |
+
"num_features": 768,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "mae",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
224,
|
11 |
+
224
|
12 |
+
],
|
13 |
+
"fixed_input_size": true,
|
14 |
+
"interpolation": "bicubic",
|
15 |
+
"crop_pct": 0.9,
|
16 |
+
"crop_mode": "center",
|
17 |
+
"mean": [
|
18 |
+
0.485,
|
19 |
+
0.456,
|
20 |
+
0.406
|
21 |
+
],
|
22 |
+
"std": [
|
23 |
+
0.229,
|
24 |
+
0.224,
|
25 |
+
0.225
|
26 |
+
],
|
27 |
+
"num_classes": 0,
|
28 |
+
"pool_size": null,
|
29 |
+
"first_conv": "patch_embed.proj",
|
30 |
+
"classifier": "head.fc",
|
31 |
+
"license": "cc-by-nc-4.0"
|
32 |
+
}
|
33 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13129937b359e30c8c47bae284fc38194d734e587ac76f2c082448e85a1b8865
|
3 |
+
size 108578960
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59a6082239a6c7d65149f4653cc95b50eb093901ef8c5383f7fc0cbeb4aa804d
|
3 |
+
size 108619638
|