timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 6,989 Bytes
2b222e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99ccc0
2b222e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for mambaout_base.in1k

A MambaOut image classification model. Pretrained on ImageNet-1k by paper authors.


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 84.8
  - GMACs: 15.8
  - Activations (M): 36.9
  - Image size: train = 224 x 224, test = 288 x 288
- **Dataset:** ImageNet-1k
- **Papers:**
  - MambaOut: Do We Really Need Mamba for Vision?: https://arxiv.org/abs/2405.07992
- **Original:** https://github.com/yuweihao/MambaOut

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('mambaout_base.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base.in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 56, 56, 128])
    #  torch.Size([1, 28, 28, 256])
    #  torch.Size([1, 14, 14, 512])
    #  torch.Size([1, 7, 7, 768])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'mambaout_base.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 7, 7, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
### By Top-1

|model                                                                                                                |img_size|top1  |top5  |param_count|
|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------|
|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384     |87.506|98.428|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288     |86.912|98.236|101.66     |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224     |86.632|98.156|101.66     |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |288     |84.974|97.332|86.48      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |288     |84.962|97.208|94.45      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |288     |84.832|97.27 |88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |288     |84.72 |96.93 |84.81      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |288     |84.598|97.098|48.5       |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |288     |84.5  |96.974|48.49      |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k)                  |224     |84.454|96.864|94.45      |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k)                  |224     |84.434|96.958|86.48      |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k)                |224     |84.362|96.952|88.83      |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k)                                                  |224     |84.168|96.68 |84.81      |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k)                                                |224     |84.086|96.63 |48.49      |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k)                          |224     |84.024|96.752|48.5       |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |288     |83.448|96.538|26.55      |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k)                                                  |224     |82.736|96.1  |26.55      |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |288     |81.054|95.718|9.14       |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k)                                                  |224     |79.986|94.986|9.14       |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |288     |79.848|95.14 |7.3        |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k)                                                |224     |78.87 |94.408|7.3        |

## Citation
```bibtex
@article{yu2024mambaout,
  title={MambaOut: Do We Really Need Mamba for Vision?},
  author={Yu, Weihao and Wang, Xinchao},
  journal={arXiv preprint arXiv:2405.07992},
  year={2024}
}
```