timm
/

rwightman HF staff commited on
Commit
95d8df5
·
1 Parent(s): 28f0f64
Files changed (4) hide show
  1. README.md +126 -0
  2. config.json +34 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: other
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for mobileone_s0
11
+
12
+ A MobileOne image classification model. Trained on ImageNet-1k by paper authors.
13
+
14
+ Please observe [original license](https://github.com/apple/ml-mobileone/blob/b7f4e6d48884593c7eb46eedc53c3a097c09e957/LICENSE).
15
+
16
+ ## Model Details
17
+ - **Model Type:** Image classification / feature backbone
18
+ - **Model Stats:**
19
+ - Params (M): 5.3
20
+ - GMACs: 1.1
21
+ - Activations (M): 15.5
22
+ - Image size: 224 x 224
23
+ - **Papers:**
24
+ - MobileOne: An Improved One millisecond Mobile Backbone: https://arxiv.org/abs/2206.04040
25
+ - **Original:** https://github.com/apple/ml-mobileone
26
+ - **Dataset:** ImageNet-1k
27
+
28
+ ## Model Usage
29
+ ### Image Classification
30
+ ```python
31
+ from urllib.request import urlopen
32
+ from PIL import Image
33
+ import timm
34
+
35
+ img = Image.open(urlopen(
36
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
37
+ ))
38
+
39
+ model = timm.create_model('mobileone_s0', pretrained=True)
40
+ model = model.eval()
41
+
42
+ # get model specific transforms (normalization, resize)
43
+ data_config = timm.data.resolve_model_data_config(model)
44
+ transforms = timm.data.create_transform(**data_config, is_training=False)
45
+
46
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
47
+
48
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
49
+ ```
50
+
51
+ ### Feature Map Extraction
52
+ ```python
53
+ from urllib.request import urlopen
54
+ from PIL import Image
55
+ import timm
56
+
57
+ img = Image.open(urlopen(
58
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
59
+ ))
60
+
61
+ model = timm.create_model(
62
+ 'mobileone_s0',
63
+ pretrained=True,
64
+ features_only=True,
65
+ )
66
+ model = model.eval()
67
+
68
+ # get model specific transforms (normalization, resize)
69
+ data_config = timm.data.resolve_model_data_config(model)
70
+ transforms = timm.data.create_transform(**data_config, is_training=False)
71
+
72
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
73
+
74
+ for o in output:
75
+ # print shape of each feature map in output
76
+ # e.g.:
77
+ # torch.Size([1, 48, 112, 112])
78
+ # torch.Size([1, 48, 56, 56])
79
+ # torch.Size([1, 128, 28, 28])
80
+ # torch.Size([1, 256, 14, 14])
81
+ # torch.Size([1, 1024, 7, 7])
82
+
83
+ print(o.shape)
84
+ ```
85
+
86
+ ### Image Embeddings
87
+ ```python
88
+ from urllib.request import urlopen
89
+ from PIL import Image
90
+ import timm
91
+
92
+ img = Image.open(urlopen(
93
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
94
+ ))
95
+
96
+ model = timm.create_model(
97
+ 'mobileone_s0',
98
+ pretrained=True,
99
+ num_classes=0, # remove classifier nn.Linear
100
+ )
101
+ model = model.eval()
102
+
103
+ # get model specific transforms (normalization, resize)
104
+ data_config = timm.data.resolve_model_data_config(model)
105
+ transforms = timm.data.create_transform(**data_config, is_training=False)
106
+
107
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
108
+
109
+ # or equivalently (without needing to set num_classes=0)
110
+
111
+ output = model.forward_features(transforms(img).unsqueeze(0))
112
+ # output is unpooled, a (1, 1024, 7, 7) shaped tensor
113
+
114
+ output = model.forward_head(output, pre_logits=True)
115
+ # output is a (1, num_features) shaped tensor
116
+ ```
117
+
118
+ ## Citation
119
+ ```bibtex
120
+ @article{mobileone2022,
121
+ title={An Improved One millisecond Mobile Backbone},
122
+ author={Vasu, Pavan Kumar Anasosalu and Gabriel, James and Zhu, Jeff and Tuzel, Oncel and Ranjan, Anurag},
123
+ journal={arXiv preprint arXiv:2206.04040},
124
+ year={2022}
125
+ }
126
+ ```
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "mobileone_s0",
3
+ "num_classes": 1000,
4
+ "num_features": 1024,
5
+ "pretrained_cfg": {
6
+ "custom_load": false,
7
+ "input_size": [
8
+ 3,
9
+ 224,
10
+ 224
11
+ ],
12
+ "fixed_input_size": false,
13
+ "interpolation": "bilinear",
14
+ "crop_pct": 0.875,
15
+ "crop_mode": "center",
16
+ "mean": [
17
+ 0.485,
18
+ 0.456,
19
+ 0.406
20
+ ],
21
+ "std": [
22
+ 0.229,
23
+ 0.224,
24
+ 0.225
25
+ ],
26
+ "num_classes": 1000,
27
+ "pool_size": [
28
+ 7,
29
+ 7
30
+ ],
31
+ "first_conv": "stem.conv",
32
+ "classifier": "head.fc"
33
+ }
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b624d5ab2a210791dff05fd4ec734b3ad271a47c2b053db625c5a5783eacb8bf
3
+ size 21660528
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e88af8db87364402cb771434853ef881bb93dfe2500d1e5f422722d5d6ffab8d
3
+ size 22002236