timm
/

Image Classification
timm
PyTorch
Safetensors
File size: 16,253 Bytes
1e76a9f
ff60f87
 
1e76a9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
license: cc-by-nc-4.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
- ig-3.6b
---
# Model card for regnety_160.swag_ft_in1k

A RegNetY-16GF image classification model. Pretrained according to SWAG: weakly-supervised learning on ~3.6B Instagram images and associated hashtags. Fine-tuned on ImageNet-1k by paper authors.

These weights are restricted from commericial use by their CC-BY-NC-4.0 license.

The `timm` RegNet implementation includes a number of enhancements not present in other implementations, including:
 * stochastic depth
 * gradient checkpointing
 * layer-wise LR decay
 * configurable output stride (dilation)
 * configurable activation and norm layers
 * option for a pre-activation bottleneck block used in RegNetV variant
 * only known RegNetZ model definitions with pretrained weights


## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
  - Params (M): 83.6
  - GMACs: 46.9
  - Activations (M): 67.7
  - Image size: 384 x 384
- **Papers:**
  - Revisiting Weakly Supervised Pre-Training of Visual Perception Models: https://arxiv.org/abs/2201.08371
  - Designing Network Design Spaces: https://arxiv.org/abs/2003.13678
- **Original:** https://github.com/facebookresearch/SWAG
- **Dataset:** ImageNet-1k
- **Pretrain Dataset:** IG-3.6B

## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('regnety_160.swag_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```

### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_160.swag_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 192, 192])
    #  torch.Size([1, 224, 96, 96])
    #  torch.Size([1, 448, 48, 48])
    #  torch.Size([1, 1232, 24, 24])
    #  torch.Size([1, 3024, 12, 12])

    print(o.shape)
```

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'regnety_160.swag_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 3024, 12, 12) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```

## Model Comparison
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).

For the comparison summary below, the ra_in1k, ra3_in1k, ch_in1k, sw_*, and lion_* tagged weights are trained in `timm`.
        
|model                    |img_size|top1  |top5  |param_count|gmacs|macts |
|-------------------------|--------|------|------|-----------|-----|------|
|[regnety_1280.swag_ft_in1k](https://huggingface.co/timm/regnety_1280.swag_ft_in1k)|384     |88.228|98.684|644.81     |374.99|210.2 |
|[regnety_320.swag_ft_in1k](https://huggingface.co/timm/regnety_320.swag_ft_in1k)|384     |86.84 |98.364|145.05     |95.0 |88.87 |
|[regnety_160.swag_ft_in1k](https://huggingface.co/timm/regnety_160.swag_ft_in1k)|384     |86.024|98.05 |83.59      |46.87|67.67 |
|[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|288     |86.004|97.83 |83.59      |26.37|38.07 |
|[regnety_1280.swag_lc_in1k](https://huggingface.co/timm/regnety_1280.swag_lc_in1k)|224     |85.996|97.848|644.81     |127.66|71.58 |
|[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|288     |85.982|97.844|83.59      |26.37|38.07 |
|[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|224     |85.574|97.666|83.59      |15.96|23.04 |
|[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|224     |85.564|97.674|83.59      |15.96|23.04 |
|[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|288     |85.398|97.584|51.82      |20.06|35.34 |
|[regnety_2560.seer_ft_in1k](https://huggingface.co/timm/regnety_2560.seer_ft_in1k)|384     |85.15 |97.436|1282.6     |747.83|296.49|
|[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|320     |85.036|97.268|57.7       |15.46|63.94 |
|[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|224     |84.976|97.416|51.82      |12.14|21.38 |
|[regnety_320.swag_lc_in1k](https://huggingface.co/timm/regnety_320.swag_lc_in1k)|224     |84.56 |97.446|145.05     |32.34|30.26 |
|[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|320     |84.496|97.004|28.94      |6.43 |37.94 |
|[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|256     |84.436|97.02 |57.7       |9.91 |40.94 |
|[regnety_1280.seer_ft_in1k](https://huggingface.co/timm/regnety_1280.seer_ft_in1k)|384     |84.432|97.092|644.81     |374.99|210.2 |
|[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|320     |84.246|96.93 |27.12      |6.35 |37.78 |
|[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|320     |84.054|96.992|23.37      |6.19 |37.08 |
|[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|320     |84.038|96.992|23.46      |7.03 |38.92 |
|[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|320     |84.022|96.866|27.58      |9.33 |37.08 |
|[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|288     |83.932|96.888|39.18      |13.22|29.69 |
|[regnety_640.seer_ft_in1k](https://huggingface.co/timm/regnety_640.seer_ft_in1k)|384     |83.912|96.924|281.38     |188.47|124.83|
|[regnety_160.swag_lc_in1k](https://huggingface.co/timm/regnety_160.swag_lc_in1k)|224     |83.778|97.286|83.59      |15.96|23.04 |
|[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|256     |83.776|96.704|28.94      |4.12 |24.29 |
|[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|288     |83.72 |96.75 |30.58      |10.55|27.11 |
|[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|288     |83.718|96.724|30.58      |10.56|27.11 |
|[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|288     |83.69 |96.778|83.59      |26.37|38.07 |
|[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|256     |83.62 |96.704|27.12      |4.06 |24.19 |
|[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|256     |83.438|96.776|23.37      |3.97 |23.74 |
|[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|256     |83.424|96.632|27.58      |5.98 |23.74 |
|[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|256     |83.36 |96.636|23.46      |4.5  |24.92 |
|[regnety_320.seer_ft_in1k](https://huggingface.co/timm/regnety_320.seer_ft_in1k)|384     |83.35 |96.71 |145.05     |95.0 |88.87 |
|[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|288     |83.204|96.66 |20.64      |6.6  |20.3  |
|[regnety_320.tv2_in1k](https://huggingface.co/timm/regnety_320.tv2_in1k)|224     |83.162|96.42 |145.05     |32.34|30.26 |
|[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|224     |83.16 |96.486|39.18      |8.0  |17.97 |
|[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|224     |83.108|96.458|30.58      |6.39 |16.41 |
|[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|288     |83.044|96.5  |20.65      |6.61 |20.3  |
|[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|224     |83.02 |96.292|30.58      |6.39 |16.41 |
|[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|224     |82.974|96.502|83.59      |15.96|23.04 |
|[regnetx_320.tv2_in1k](https://huggingface.co/timm/regnetx_320.tv2_in1k)|224     |82.816|96.208|107.81     |31.81|36.3  |
|[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|288     |82.742|96.418|19.44      |5.29 |18.61 |
|[regnety_160.tv2_in1k](https://huggingface.co/timm/regnety_160.tv2_in1k)|224     |82.634|96.22 |83.59      |15.96|23.04 |
|[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|320     |82.634|96.472|13.49      |3.86 |25.88 |
|[regnety_080_tv.tv2_in1k](https://huggingface.co/timm/regnety_080_tv.tv2_in1k)|224     |82.592|96.246|39.38      |8.51 |19.73 |
|[regnetx_160.tv2_in1k](https://huggingface.co/timm/regnetx_160.tv2_in1k)|224     |82.564|96.052|54.28      |15.99|25.52 |
|[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|320     |82.51 |96.358|13.46      |3.92 |25.88 |
|[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|224     |82.44 |96.198|20.64      |4.0  |12.29 |
|[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|224     |82.304|96.078|20.65      |4.0  |12.29 |
|[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|256     |82.16 |96.048|13.46      |2.51 |16.57 |
|[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|256     |81.936|96.15 |13.49      |2.48 |16.57 |
|[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|224     |81.924|95.988|19.44      |3.2  |11.26 |
|[regnety_032.tv2_in1k](https://huggingface.co/timm/regnety_032.tv2_in1k)|224     |81.77 |95.842|19.44      |3.2  |11.26 |
|[regnetx_080.tv2_in1k](https://huggingface.co/timm/regnetx_080.tv2_in1k)|224     |81.552|95.544|39.57      |8.02 |14.06 |
|[regnetx_032.tv2_in1k](https://huggingface.co/timm/regnetx_032.tv2_in1k)|224     |80.924|95.27 |15.3       |3.2  |11.37 |
|[regnety_320.pycls_in1k](https://huggingface.co/timm/regnety_320.pycls_in1k)|224     |80.804|95.246|145.05     |32.34|30.26 |
|[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|288     |80.712|95.47 |9.72       |2.39 |16.43 |
|[regnety_016.tv2_in1k](https://huggingface.co/timm/regnety_016.tv2_in1k)|224     |80.66 |95.334|11.2       |1.63 |8.04  |
|[regnety_120.pycls_in1k](https://huggingface.co/timm/regnety_120.pycls_in1k)|224     |80.37 |95.12 |51.82      |12.14|21.38 |
|[regnety_160.pycls_in1k](https://huggingface.co/timm/regnety_160.pycls_in1k)|224     |80.288|94.964|83.59      |15.96|23.04 |
|[regnetx_320.pycls_in1k](https://huggingface.co/timm/regnetx_320.pycls_in1k)|224     |80.246|95.01 |107.81     |31.81|36.3  |
|[regnety_080.pycls_in1k](https://huggingface.co/timm/regnety_080.pycls_in1k)|224     |79.882|94.834|39.18      |8.0  |17.97 |
|[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|224     |79.872|94.974|9.72       |1.45 |9.95  |
|[regnetx_160.pycls_in1k](https://huggingface.co/timm/regnetx_160.pycls_in1k)|224     |79.862|94.828|54.28      |15.99|25.52 |
|[regnety_064.pycls_in1k](https://huggingface.co/timm/regnety_064.pycls_in1k)|224     |79.716|94.772|30.58      |6.39 |16.41 |
|[regnetx_120.pycls_in1k](https://huggingface.co/timm/regnetx_120.pycls_in1k)|224     |79.592|94.738|46.11      |12.13|21.37 |
|[regnetx_016.tv2_in1k](https://huggingface.co/timm/regnetx_016.tv2_in1k)|224     |79.44 |94.772|9.19       |1.62 |7.93  |
|[regnety_040.pycls_in1k](https://huggingface.co/timm/regnety_040.pycls_in1k)|224     |79.23 |94.654|20.65      |4.0  |12.29 |
|[regnetx_080.pycls_in1k](https://huggingface.co/timm/regnetx_080.pycls_in1k)|224     |79.198|94.55 |39.57      |8.02 |14.06 |
|[regnetx_064.pycls_in1k](https://huggingface.co/timm/regnetx_064.pycls_in1k)|224     |79.064|94.454|26.21      |6.49 |16.37 |
|[regnety_032.pycls_in1k](https://huggingface.co/timm/regnety_032.pycls_in1k)|224     |78.884|94.412|19.44      |3.2  |11.26 |
|[regnety_008_tv.tv2_in1k](https://huggingface.co/timm/regnety_008_tv.tv2_in1k)|224     |78.654|94.388|6.43       |0.84 |5.42  |
|[regnetx_040.pycls_in1k](https://huggingface.co/timm/regnetx_040.pycls_in1k)|224     |78.482|94.24 |22.12      |3.99 |12.2  |
|[regnetx_032.pycls_in1k](https://huggingface.co/timm/regnetx_032.pycls_in1k)|224     |78.178|94.08 |15.3       |3.2  |11.37 |
|[regnety_016.pycls_in1k](https://huggingface.co/timm/regnety_016.pycls_in1k)|224     |77.862|93.73 |11.2       |1.63 |8.04  |
|[regnetx_008.tv2_in1k](https://huggingface.co/timm/regnetx_008.tv2_in1k)|224     |77.302|93.672|7.26       |0.81 |5.15  |
|[regnetx_016.pycls_in1k](https://huggingface.co/timm/regnetx_016.pycls_in1k)|224     |76.908|93.418|9.19       |1.62 |7.93  |
|[regnety_008.pycls_in1k](https://huggingface.co/timm/regnety_008.pycls_in1k)|224     |76.296|93.05 |6.26       |0.81 |5.25  |
|[regnety_004.tv2_in1k](https://huggingface.co/timm/regnety_004.tv2_in1k)|224     |75.592|92.712|4.34       |0.41 |3.89  |
|[regnety_006.pycls_in1k](https://huggingface.co/timm/regnety_006.pycls_in1k)|224     |75.244|92.518|6.06       |0.61 |4.33  |
|[regnetx_008.pycls_in1k](https://huggingface.co/timm/regnetx_008.pycls_in1k)|224     |75.042|92.342|7.26       |0.81 |5.15  |
|[regnetx_004_tv.tv2_in1k](https://huggingface.co/timm/regnetx_004_tv.tv2_in1k)|224     |74.57 |92.184|5.5        |0.42 |3.17  |
|[regnety_004.pycls_in1k](https://huggingface.co/timm/regnety_004.pycls_in1k)|224     |74.018|91.764|4.34       |0.41 |3.89  |
|[regnetx_006.pycls_in1k](https://huggingface.co/timm/regnetx_006.pycls_in1k)|224     |73.862|91.67 |6.2        |0.61 |3.98  |
|[regnetx_004.pycls_in1k](https://huggingface.co/timm/regnetx_004.pycls_in1k)|224     |72.38 |90.832|5.16       |0.4  |3.14  |
|[regnety_002.pycls_in1k](https://huggingface.co/timm/regnety_002.pycls_in1k)|224     |70.282|89.534|3.16       |0.2  |2.17  |
|[regnetx_002.pycls_in1k](https://huggingface.co/timm/regnetx_002.pycls_in1k)|224     |68.752|88.556|2.68       |0.2  |2.16  |

## Citation
```bibtex
@inproceedings{singh2022revisiting,
  title={{Revisiting Weakly Supervised Pre-Training of Visual Perception Models}}, 
  author={Singh, Mannat and Gustafson, Laura and Adcock, Aaron and Reis, Vinicius de Freitas and Gedik, Bugra and Kosaraju, Raj Prateek and Mahajan, Dhruv and Girshick, Ross and Doll{'a}r, Piotr and van der Maaten, Laurens},
  booktitle={CVPR},
  year={2022}
}
```
```bibtex
@InProceedings{Radosavovic2020,
  title = {Designing Network Design Spaces},
  author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r},
  booktitle = {CVPR},
  year = {2020}
}
```
```bibtex
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
```